PURE MATHEMATICS - 1 9709

(March, June and November series 2020 - 2023 With marking scheme)

Functions

Exercise - 1
1.

Functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto 3 x+2, \quad x \in \mathbb{R} \\
& \mathrm{~g}: x \mapsto 4 x-12, \quad x \in \mathbb{R}
\end{aligned}
$$

Solve the equation $\mathrm{f}^{-1}(x)=\operatorname{gf}(x)$.
2.
(a) The curve $y=x^{2}+3 x+4$ is translated by $\binom{2}{0}$.

Find and simplify the equation of the translated curve.
(b) The graph of $y=\mathrm{f}(x)$ is transformed to the graph of $y=3 \mathrm{f}(-x)$.

Describe fully the two single transformations which have been combined to give the resulting transformation.
3.

The graph of $y=\mathrm{f}(x)$ is transformed to the graph of $y=1+\mathrm{f}\left(\frac{1}{2} x\right)$.
Describe fully the two single transformations which have been combined to give the resulting transformation.
4.
(a) Express $2 x^{2}+12 x+11$ in the form $2(x+a)^{2}+b$, where a and b are constants.

The function f is defined by $\mathrm{f}(x)=2 x^{2}+12 x+11$ for $x \leqslant-4$.
(b) Find an expression for $\mathrm{f}^{-1}(x)$ and state the domain of f^{-1}.

The function g is defined by $\mathrm{g}(x)=2 x-3$ for $x \leqslant k$.
(c) For the case where $k=-1$, solve the equation $\operatorname{fg}(x)=193$.
(d) State the largest value of k possible for the composition fg to be defined.

Question 9: 9709/12/FM/20
5.

Functions f and g are defined for $x \in \mathbb{R}$ by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto \frac{1}{2} x-a, \\
& \mathrm{~g}: x \mapsto 3 x+b,
\end{aligned}
$$

where a and b are constants.
(a) Given that $\operatorname{gg}(2)=10$ and $\mathrm{f}^{-1}(2)=14$, find the values of a and b.
(b) Using these values of a and b, find an expression for $\mathrm{gf}(x)$ in the form $c x+d$, where c and d are constants.
6.

The function f is defined for $x \in \mathbb{R}$ by

$$
\mathrm{f}: x \mapsto a-2 x
$$

where a is a constant.
(a) Express $\mathrm{ff}(x)$ and $\mathrm{f}^{-1}(x)$ in terms of a and x.
(b) Given that $\mathrm{ff}(x)=\mathrm{f}^{-1}(x)$, find x in terms of a.
7.

In each of parts (a), (b) and (c), the graph shown with solid lines has equation $y=\mathrm{f}(x)$. The graph shown with broken lines is a transformation of $y=\mathrm{f}(x)$.
(a)

State, in terms of f, the equation of the graph shown with broken lines.
(b)

State, in terms of f , the equation of the graph shown with broken lines.
(c)

State, in terms of f, the equation of the graph shown with broken lines.
Question 3: 9709/13/MJ/20
8.

The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}(x)=x^{2}+3 & \text { for } x>0 \\
\mathrm{~g}(x)=2 x+1 & \text { for } x>-\frac{1}{2}
\end{array}
$$

(a) Find an expression for $\mathrm{fg}(x)$.
(b) Find an expression for $(\mathrm{fg})^{-1}(x)$ and state the domain of $(\mathrm{fg})^{-1}$.
(c) Solve the equation $\mathrm{fg}(x)-3=\operatorname{gf}(x)$.
9.

Functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}(x)=4 x-2, \quad \text { for } x \in \mathbb{R}, \\
& \mathrm{~g}(x)=\frac{4}{x+1}, \quad \text { for } x \in \mathbb{R}, x \neq-1
\end{aligned}
$$

(a) Find the value of $\mathrm{fg}(7)$.
(b) Find the values of x for which $\mathrm{f}^{-1}(x)=\mathrm{g}^{-1}(x)$.
10.

The function f is defined by $\mathrm{f}(x)=\frac{\angle x}{3 x-1}$ for $x>\frac{1}{3}$.
(a) Find an expression for $\mathrm{f}^{-1}(x)$.
(b) Show that $\frac{2}{3}+\frac{2}{3(3 x-1)}$ can be expressed as $\frac{2 x}{3 x-1}$.
(c) State the range of f .
11.

In the diagram, the graph of $y=\mathrm{f}(x)$ is shown with solid lines. The graph shown with broken lines is a transformation of $y=\mathrm{f}(x)$.
(a) Describe fully the two single transformations of $y=\mathrm{f}(x)$ that have been combined to give the resulting transformation.
(b) State in terms of y, f and x, the equation of the graph shown with broken lines.
12.

Functions f and g are defined as follows:

$$
\begin{aligned}
& \mathrm{f}: x \mapsto x^{2}+2 x+3 \text { for } x \leqslant-1, \\
& \mathrm{~g}: x \mapsto 2 x+1 \text { for } x \geqslant-1 .
\end{aligned}
$$

(a) Express $\mathrm{f}(x)$ in the form $(x+a)^{2}+b$ and state the range of f .
(b) Find an expression for $\mathrm{f}^{-1}(x)$.
(c) Solve the equation $\operatorname{gf}(x)=13$.
13.

Functions f and g are defined as follows:

$$
\begin{aligned}
& \mathrm{f}(x)=(x-2)^{2}-4 \text { for } x \geqslant 2, \\
& \mathrm{~g}(x)=a x+2 \text { for } x \in \mathbb{R},
\end{aligned}
$$

where a is a constant.
(a) State the range of f .
(b) Find $\mathrm{f}^{-1}(x)$.
(c) Given that $a=-\frac{5}{3}$, solve the equation $\mathrm{f}(x)=\mathrm{g}(x)$.
14.

The function f is defined by $\mathrm{f}(x)=2 x^{2}+3$ for $x \geqslant 0$.
(a) Find and simplify an expression for $\mathrm{ff}(x)$.
(b) Solve the equation $\mathrm{ff}(x)=34 x^{2}+19$.

Question 5: 9709/12/MJ/21
15.

Functions f and g are defined as follows:

$$
\begin{aligned}
& \mathrm{f}: x \mapsto x^{2}-1 \text { for } x<0 \\
& \mathrm{~g}: x \mapsto \frac{1}{2 x+1} \text { for } x<-\frac{1}{2}
\end{aligned}
$$

(a) Solve the equation $\mathrm{fg}(x)=3$.
(b) Find an expression for $(\mathrm{fg})^{-1}(x)$.

Question 8: 9709/13/MJ/21
16.
(a) Express $-3 x^{2}+12 x+2$ in the form $-3(x-a)^{2}+b$, where a and b are constants.

The one-one function f is defined by $\mathrm{f}: x \mapsto-3 x^{2}+12 x+2$ for $x \leqslant k$.
(b) State the largest possible value of the constant k.

It is now given that $k=-1$.
(c) State the range of f .
(d) Find an expression for $\mathrm{f}^{-1}(x)$.

The result of translating the graph of $y=\mathrm{f}(x)$ by $\binom{-3}{1}$ is the graph of $y=\mathrm{g}(x)$.
(e) Express $\mathrm{g}(x)$ in the form $p x^{2}+q x+r$, where p, q and r are constants.

Question 8: 9709/11/ON/21
17.

The graph of $y=\mathrm{f}(x)$ is transformed to the graph of $y=\mathrm{f}(2 x)-3$.
(a) Describe fully the two single transformations that have been combined to give the resulting transformation.

The point $P(5,6)$ lies on the transformed curve $y=\mathrm{f}(2 x)-3$.
(b) State the coordinates of the corresponding point on the original curve $y=\mathrm{f}(x)$.
18.

The function f is defined as follows:

$$
\mathrm{f}(x)=\frac{x+3}{x-1} \text { for } x>1 \text {. }
$$

(a) Find the value of $\mathrm{ff}(5)$.
(b) Find an expression for $\mathrm{f}^{-1}(x)$.
19.

The graph of $y=\mathrm{f}(x)$ is transformed to the graph of $y=3-\mathrm{f}(x)$.
Describe fully, in the correct order, the two transformations that have been combined.
20.

The diagram shows the graph of $y=\mathrm{f}(x)$.
(a) On this diagram sketch the graph of $y=\mathrm{f}^{-1}(x)$.

It is now given that $\mathrm{f}(x)=-\frac{x}{\sqrt{4-x^{2}}}$ where $-2<x<2$.
(b) Find an expression for $\mathrm{f}^{-1}(x)$.

The function g is defined by $\mathrm{g}(x)=2 x$ for $-a<x<a$, where a is a constant.
(c) State the maximum possible value of a for which fg can be formed.
(d) Assuming that fg can be formed, find and simplify an expression for $\mathrm{fg}(x)$.
21.
(a) Express $2 x^{2}-8 x+14$ in the form $2\left[(x-a)^{2}+b\right]$.

The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}(x)=x^{2} \quad \text { for } x \in \mathbb{R}, \\
& \mathrm{~g}(x)=2 x^{2}-8 x+14 \quad \text { for } x \in \mathbb{R} .
\end{aligned}
$$

(b) Describe fully a sequence of transformations that maps the graph of $y=\mathrm{f}(x)$ onto the graph of $y=\mathrm{g}(x)$, making clear the order in which the transformations are applied.

Question 5: 9709/12/FM/22

22.

Functions f, g and h are defined as follows:

$$
\begin{aligned}
& \mathrm{f}: x \mapsto x-4 x^{\frac{1}{2}}+1 \quad \text { for } x \geqslant 0 \\
& \mathrm{~g}: x \mapsto m x^{2}+n \quad \text { for } x \geqslant-2, \text { where } m \text { and } n \text { are constants, } \\
& \mathrm{h}: x \mapsto x^{\frac{1}{2}}-2 \quad \text { for } x \geqslant 0 .
\end{aligned}
$$

(a) Solve the equation $\mathrm{f}(x)=0$, giving your solutions in the form $x=a+b \sqrt{c}$, where a, b and c are integers.
(b) Given that $\mathrm{f}(x) \equiv \operatorname{gh}(x)$, find the values of m and n.

Question 9: 9709/12/FM/22
23.

The function f is defined as follows:

$$
f(x)=\frac{x^{2}-4}{x^{2}+4} \quad \text { for } x>2
$$

(a) Find an expression for $\mathrm{f}^{-1}(x)$.
(b) Show that $1-\frac{8}{x^{2}+4}$ can be expressed as $\frac{x^{2}-4}{x^{2}+4}$ and hence state the range of f .
(c) Explain why the composite function ff cannot be formed.
24.

Functions f and g are defined as follows:

$$
\begin{array}{ll}
\mathrm{f}(x)=\frac{2 x+1}{2 x-1} & \text { for } x \neq \frac{1}{2} \\
\mathrm{~g}(x)=x^{2}+4 & \text { for } x \in \mathbb{R} .
\end{array}
$$

(a)

The diagram shows part of the graph of $y=\mathrm{f}(x)$.
State the domain of f^{-1}.
(b) Find an expression for $\mathrm{f}^{-1}(x)$.
(c) Find $\mathrm{gf}^{-1}(3)$.
(d) Explain why $\mathrm{g}^{-1}(x)$ cannot be found.
(e) Show that $1+\frac{2}{2 x-1}$ can be expressed as $\frac{2 x+1}{2 x-1}$. Hence find the area of the triangle enclosed by the tangent to the curve $y=\mathrm{f}(x)$ at the point where $x=1$ and the x - and y-axes.

Question 10: 9709/12/MJ/22
25.

The function f is defined by $\mathrm{f}(x)=2 x^{2}-16 x+23$ for $x<3$.
(a) Express $\mathrm{f}(x)$ in the form $2(x+a)^{2}+b$.
(b) Find the range of f.
(c) Find an expression for $\mathrm{f}^{-1}(x)$.

The function g is defined by $\mathrm{g}(x)=2 x+4$ for $x<-1$.
(d) Find and simplify an expression for $\mathrm{fg}(x)$.
26.

The function f is defined by $\mathrm{f}(x)=2-\frac{3}{4 x-p}$ for $x>\frac{p}{4}$, where p is a constant.
(a) Find $\mathrm{f}^{\prime}(x)$ and hence determine whether f is an increasing function, a decreasing function or neither.
(b) Express $\mathrm{f}^{-1}(x)$ in the form $\frac{p}{a}-\frac{b}{c x-d}$, where a, b, c and d are integers.
(c) Hence state the value of p for which $\mathrm{f}^{-1}(x) \equiv \mathrm{f}(x)$.
27.

Functions f and g are both defined for $x \in \mathbb{R}$ and are given by

$$
\begin{aligned}
& \mathrm{f}(x)=x^{2}-4 x+9 \\
& \mathrm{~g}(x)=2 x^{2}+4 x+12
\end{aligned}
$$

(a) Express $\mathrm{f}(x)$ in the form $(x-a)^{2}+b$.
(b) Express $\mathrm{g}(x)$ in the form $2\left[(x+c)^{2}+d\right]$.
(c) Express $\mathrm{g}(x)$ in the form $k \mathrm{f}(x+h)$, where k and h are integers.
(d) Describe fully the two transformations that have been combined to transform the graph of $y=\mathrm{f}(x)$ to the graph of $y=\mathrm{g}(x)$.
28.

The graph with equation $y=\mathrm{f}(x)$ is transformed to the graph with equation $y=\mathrm{g}(x)$ by a stretch in the x-direction with factor 0.5 , followed by a translation of $\binom{0}{1}$.
(a) The diagram below shows the graph of $y=\mathrm{f}(x)$.

On the diagram sketch the graph of $y=\mathrm{g}(x)$.

(b) Find an expression for $\mathrm{g}(x)$ in terms of $\mathrm{f}(x)$.
29.

Functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}(x)=x+\frac{1}{x} \quad \text { for } x>0 \\
& \mathrm{~g}(x)=a x+1 \quad \text { for } x \in \mathbb{R}
\end{aligned}
$$

where a is a constant.
(a) Find an expression for $\mathrm{gf}(x)$.
(b) Given that $\operatorname{gf}(2)=11$, find the value of a.
(c) Given that the graph of $y=\mathrm{f}(x)$ has a minimum point when $x=1$, explain whether or not f has an inverse.

It is given instead that $a=5$.
(d) Find and simplify an expression for $\mathrm{g}^{-1} \mathrm{f}(x)$.
(e) Explain why the composite function fg cannot be formed.
30.

The function f is defined by $\mathrm{f}(x)=-2 x^{2}-8 x-13$ for $x<-3$.
(a) Express $\mathrm{f}(x)$ in the form $-2(x+a)^{2}+b$, where a and b are integers.
(b) Find the range of f.
(c) Find an expression for $\mathrm{f}^{-1}(x)$.

Question 2: 9709/13/ON/22
31.

The diagram shows a curve which has a maximum point at $(8,12)$ and a minimum point at $(8,0)$. The curve is the result of applying a combination of two transformations to a circle. The first transformation applied is a translation of $\binom{7}{-3}$. The second transformation applied is a stretch in the y-direction.
(a) State the scale factor of the stretch.
(b) State the radius of the original circle.
(c) State the coordinates of the centre of the circle after the translation has been completed but before the stretch is applied.
(d) State the coordinates of the centre of the original circle.

Question 5: 9709/13/ON/22
32.

A function f is defined by $\mathrm{f}(x)=x^{2}-2 x+5$ for $x \in \mathbb{R}$. A sequence of transformations is applied in the following order to the graph of $y=\mathrm{f}(x)$ to give the graph of $y=\mathrm{g}(x)$.

Stretch parallel to the x-axis with scale factor $\frac{1}{2}$
Reflection in the y-axis
Stretch parallel to the y-axis with scale factor 3
Find $\mathrm{g}(x)$, giving your answer in the form $a x^{2}+b x+c$, where a, b and c are constants.
33.

The function f is defined by $\mathrm{f}(x)=-3 x^{2}+2$ for $x \leqslant-1$.
(a) State the range of f .
(b) Find an expression for $\mathrm{f}^{-1}(x)$.

The function g is defined by $\mathrm{g}(x)=-x^{2}-1$ for $x \leqslant-1$.
(c) Solve the equation $\mathrm{fg}(x)-\operatorname{gf}(x)+8=0$.
34.

The diagram shows graphs with equations $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$.
Describe fully a sequence of two transformations which transforms the graph of $y=\mathrm{f}(x)$ to $y=\mathrm{g}(x)$.

Question 3: 9709/11/MJ/23
35.

The functions f and g are defined as follows, where a and b are constants.

$$
\begin{aligned}
& \mathrm{f}(x)=1+\frac{2 a}{x-a} \text { for } x>a \\
& \mathrm{~g}(x)=b x-2 \text { for } x \in \mathbb{R}
\end{aligned}
$$

(a) Given that $\mathrm{f}(7)=\frac{5}{2}$ and $\mathrm{gf}(5)=4$, find the values of a and b.

For the rest of this question, you should use the value of a which you found in (a).
(b) Find the domain of f^{-1}.
(c) Find an expression for $\mathrm{f}^{-1}(x)$.
36.

The diagram shows the graph of $y=\mathrm{f}(x)$, which consists of the two straight lines $A B$ and $B C$. The lines $A^{\prime} B^{\prime}$ and $B^{\prime} C^{\prime}$ form the graph of $y=\mathrm{g}(x)$, which is the result of applying a sequence of two transformations, in either order, to $y=\mathrm{f}(x)$.

State fully the two transformations.
Question 1: 9709/13/MJ/23
37.

The function f is defined, for $x \in \mathbb{R}$, by $\mathrm{f}: x \mapsto x^{2}+a x+b$, where a and b are constants.
(a) It is given that $a=6$ and $b=-8$.

Find the range of f.
(b) It is given instead that $a=5$ and that the roots of the equation $\mathrm{f}(x)=0$ are k and $-2 k$, where k is a constant.

Find the values of b and k.
(c) Show that if the equation $\mathrm{f}(x+a)=a$ has no real roots then $a^{2}<4(b-a)$.

Question 11: 9709/01/SP/20
38.

The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}(x)=x^{2}-4 x+3 \text { for } x>c, \text { where } c \text { is a constant, } \\
& \mathrm{g}(x)=\frac{1}{x+1} \text { for } x>-1
\end{aligned}
$$

(a) Express $\mathrm{f}(x)$ in the form $(x-a)^{2}+b$.

It is given that f is a one-one function.
(b) State the smallest possible value of c.

It is now given that $c=5$.
(c) Find an expression for $\mathrm{f}^{-1}(x)$ and state the domain of f^{-1}.
(d) Find an expression for $\mathrm{gf}(x)$ and state the range of gf .

Question 9: 9709/13/MJ/20
39.
(a) The graph of $y=\mathrm{f}(x)$ is transformed to the graph of $y=2 \mathrm{f}(x-1)$.

Describe fully the two single transformations which have been combined to give the resulting transformation.
(b) The curve $y=\sin 2 x-5 x$ is reflected in the y-axis and then stretched by scale factor $\frac{1}{3}$ in the x-direction.

Write down the equation of the transformed curve.
Question 2: 9709/12/MJ/21
40.

Functions f and g are both defined for $x \in \mathbb{R}$ and are given by

$$
\begin{aligned}
& \mathrm{f}(x)=x^{2}-2 x+5 \\
& \mathrm{~g}(x)=x^{2}+4 x+13 .
\end{aligned}
$$

(a) By first expressing each of $\mathrm{f}(x)$ and $\mathrm{g}(x)$ in completed square form, express $\mathrm{g}(x)$ in the form $\mathrm{f}(x+p)+q$, where p and q are constants.
(b) Describe fully the transformation which transforms the graph of $y=\mathrm{f}(x)$ to the graph of $y=\mathrm{g}(x)$.

Question 6: 9709/13/MJ/21

41.

(a) The curve with equation $y=x^{2}+2 x-5$ is translated by $\binom{-1}{3}$.

Find the equation of the translated curve, giving your answer in the form $y=a x^{2}+b x+c$.
(b) The curve with equation $y=x^{2}+2 x-5$ is transformed to a curve with equation $y=4 x^{2}+4 x-5$. Describe fully the single transformation that has been applied.

Question 4: 9709/13/MJ/22
42.

The function f is defined by $\mathrm{f}(x)=2-\frac{0}{x+2}$ for $x>-2$.
(a) State the range of f .
(b) Obtain an expression for $\mathrm{f}^{-1}(x)$ and state the domain of f^{-1}.

The function g is defined by $\mathrm{g}(x)=x+3$ for $x>0$.
(c) Obtain an expression for $\mathrm{fg}(x)$ giving your answer in the form $\frac{a x+b}{c x+d}$, where a, b, c and d are integers.

MARK SCHEME

1.

Answer	Marks	Partial Marks	Guidance
$\mathrm{f}^{-1}(x)=\frac{x-2}{3}$	1	B1	
$\mathrm{gf}(x)=4(3 x+2)-12$	1	B1	
Equate $\mathrm{f}^{-1}(x)$ and gf (x) expressions, $x=\frac{2}{7}$	2	M1A1	
		4	

2.

Answer	Marks	Partial Marks	Guidance
$y=(x-2)^{2}+3(x-2)+4=x^{2}-x+2$		$\mathbf{2}$	M1A1
Reflection $[$ in $] y$ axis	1	B1	In either order
Stretch factor 3 in y direction	2	B1B1	B1 for stretch, B1 for factor 3 in y direction
		$\mathbf{3}$	

3.

Answer	Marks	Guidance
[Stretch] [factor 2, x direction (or y-axis invariant)]	$* \mathbf{B} 1$ DB1	
[Translation or Shift] [1 unit in y direction] or	B1 B1	Accept transformations in either order. Allow (0, 1) for the vector
$[$ Translation/Shift $\left.]\left[\begin{array}{l}0 \\ 1\end{array}\right)\right]$	$\mathbf{4}$	

4.

Answer	Marks	Guidance
$\left[2(x+3)^{2}\right][-7]$	B1B1	Stating $a=3, b=-7$ gets B1B1
	2	
$y=2(x+3)^{2}-7 \rightarrow 2(x+3)^{2}=y+7 \rightarrow(x+3)^{2}=\frac{y+7}{2}$	M1	First 2 operations correct. Condone sign error or with x / y interchange
$x+3=(\pm) \sqrt{\frac{y+7}{2}} \rightarrow x=(\pm) \sqrt{\frac{y+7}{2}}-3 \rightarrow \mathrm{f}^{-1}(x)=-\sqrt{\frac{x+7}{2}}-3$	A1FT	FT on their a and b. Allow $y=\ldots$
Domain: $x \geqslant-5$ or $\geqslant-5$ or $[-5, \infty)$	B1	Do not accept $y=\ldots, f(x)=\ldots, f^{-1}(x)=\ldots$
	3	
$\mathrm{fg}(x)=8 x^{2}-7$	B1FT	SOI. FT on their -7 from part (a)
$8 x^{2}-7=193 \rightarrow x^{2}=25 \rightarrow x=-5$ only	B1	
Alternative method for question 9(c)		
$\mathrm{g}(\mathrm{x})=\mathrm{f}^{-1}(193) \rightarrow 2 x-3=-\sqrt{100}-3$	M1	FT on their $\mathrm{f}^{-1}(x)$
$x=-5$ only	A1	
	2	
$\text { (Largest } k \text { is) }-\frac{1}{2}$	B1	$\text { Accept }-\frac{1}{2} \text { or } k \leqslant-\frac{1}{2}$
	1	

5.

	Answer	Marks
$3(3 x+b)+b=9 x+4 b \rightarrow 10=18+4 b$	M1	
$b=-2$	A1	
Either $\mathrm{f}(14)=2$ or $\mathrm{f}^{-1}(x)=2(x+a)$ etc.	M1	
$a=5$	A1	
	M1	
$\operatorname{gf}(x)=3\left(\frac{1}{2} x-5\right)-2$	M1	
$\operatorname{gf}(x)=\frac{3}{2} x-17$	A1	
	$\mathbf{2}$	

6.

Answer	Marks
$\mathrm{ff}(x)=a-2(a-2 x)$	M1
$\mathrm{ff}(x)=4 x-a$	A1
$\mathrm{f}^{-1}(x)=\frac{a-x}{2}$	M1 A1
	M1
$4 x-a=\frac{a-x}{2} \rightarrow 9 x=3 a$	$\mathbf{4}$
$x=\frac{a}{3}$	A1
	$\mathbf{2}$

7.

| Answer | Marks |
| :--- | ---: | ---: |
| $(y)=\mathrm{f}(-x)$ | B1 |
| | $\mathbf{1}$ |
| $(y)=2 \mathrm{f}(x)$ | B1 |
| $(y)=\mathrm{f}(x+4)-3$ | $\mathbf{B 1}$ B1 |
| | $\mathbf{2}$ |

8.

Answer	Marks	Guidance
$\mathrm{fg}(x)=(2 x+1)^{2}+3$	B1	OE
	$\mathbf{1}$	
$y=(2 x+1)^{2}+3 \rightarrow 2 x+1=(\pm) \sqrt{y-3}$	M1	1st two operations. Allow one sign error or x / y interchanged
$x=(\pm) \frac{1}{2}(\sqrt{y-3}-1)$	M1	OE 2nd two operations. Allow one sign error or x / y interchanged
$\left(\mathrm{fg}^{-1}(x)=\right) \frac{1}{2}(\sqrt{x-3}-1)$ for $(x)>3$	A1 B1	Allow $(3, \infty)$
	$\mathbf{4}$	
$\mathrm{gf}(x)=2\left(x^{2}+3\right)+1$	B1	SOI
$(2 x+1)^{2}+3-3=2\left(x^{2}+3\right)+1 \rightarrow 2 x^{2}+4 x-6(=0)$	${ }^{*}$ M1	Express as 3-term quadratic
$(2)(x+3)(x-1)(=0)$	DM1	Or quadratic formula or completing the square
$x=1$	A1	
	$\mathbf{4}$	

9.

Answer	Marks	Guidance
0	B1	
	$\mathbf{1}$	
$\left(\mathrm{f}^{-1}(x)\right)=\frac{x+2}{4},\left(\mathrm{~g}^{-1}(x)\right)=\frac{4-x}{x}$ or $\frac{4}{x}-1$	B1 B1	OE. Sight of correct inverses.
$x^{2}+6 x-16(=0)$	B1	Equating inverses and simplifying.
$(x+8)$ and $(x-2)$	M1	Correct attempt at solution of their 3 3-term quadratic- factorising, completing the square or use of formula.
$(x=) 2$ or -8	A1	Do not accept answers obtained with no method shown.
	$\mathbf{5}$	

10.

Answer	Marks	Guidance
$y=\frac{2 x}{3 x-1} \rightarrow 3 x y-y=2 x \rightarrow 3 x y-2 x=y($ or $-y=2 x-3 x y)$	${ }^{*}$ M1	For 1st two operations. Condone a sign error
$x(3 y-2)=y \rightarrow x=\frac{y}{3 y-2}$ (or $\left.x=\frac{-y}{2-3 y}\right)$	DM1	For 2nd two operations. Condone a sign error
$\left(\mathrm{f}^{-1}(x)\right)=\frac{x}{3 x-2}$	A1	Allow $\left(\mathrm{f}^{-1}(x)\right)=\frac{-x}{2-3 x}$
	$\mathbf{3}$	
$\left[\frac{2(3 x-1)+2}{3(3 x-1)}\right]=\left[\frac{6 x}{3(3 x-1)}=\frac{2 x}{3 x-1}\right]$	B1 B1	AG, WWW First B1 is for a correct single unsimplified fraction. An intermediate step needs to be shown. Equivalent methods accepted.
	$\mathbf{2}$	
Answer	Marks	
$(\mathrm{f}(x))>\frac{2}{3}$	B1	Allow $(y)>\frac{2}{3}$. Do not allow $x>\frac{2}{3}$
	$\mathbf{1}$	

11.

Answer	Marks	Guidance
(Stretch) (factor 3 in y direction or parallel to the y-axis)	B1 B1	
(Translation) $\binom{4}{0}$	B1 B1	Allow Translation 4 (units) in x direction. N.B. Transformations can be given in either order.
	$\mathbf{4}$	
$[y=] 3 \mathrm{f}(x-4)$	B1 B1	B1 for 3, B1 for $(x-4)$ with no extra terms.
	$\mathbf{2}$	

12.

Answer	Marks	Guidance
$[\mathrm{f}(x)=](x+1)^{2}+2$	B1 B1	Accept $a=1, b=2$.
Range [of f is $(y)] \geqslant 2$	B1FT	OE. Do not allow $x \geqslant 2$, FT on their b.
	3	
$y=(x+1)^{2}+2$ leading to $x=[\pm] \sqrt{y-2}-1$	M1	Or by using the formula. Allow one sign error.
$\mathrm{f}^{-1}(x)=-\sqrt{x-2}-1$	A1	
	2	
Answer	Marks	Guidance
$2\left(x^{2}+2 x+3\right)+1=13$	B1	Or using a correct completed square form of $\mathrm{f}(x)$.
$2 x^{2}+4 x-6[=0]$ leading to $(2)(x-1)(x+3)[=0]$	B1	Or $x=1, x=-3$ using formula or completing square. Must reach 2 solutions.
$x=-3$ only	B1	
	3	

13.

Answer	Marks	Guidance
Range of f is $\mathrm{f}(x) \geqslant-4$	B1	Allow y, f or 'range' or $[-4, \infty)$
	$\mathbf{1}$	
$y=(x-2)^{2}-4 \Rightarrow(x-2)^{2}=y+4 \Rightarrow x-2=+\sqrt{(y+4)}$ or $\pm \sqrt{(y+4)}$	M1	May swap variables here
$\left[\mathrm{f}^{-1}(x)\right]=\sqrt{(x+4)}+2$	A1	
	$\mathbf{2}$	
$(x-2)^{2}-4=-\frac{5}{3} x+2 \Rightarrow x^{2}-4 x+4-4=-\frac{5}{3} x+2\left[\Rightarrow x^{2}-\frac{7}{3} x-2=0\right]$	M1	Equating and simplifying to a 3-term quadratic
$(3 x+2)(x-3)[=0]$ or $\frac{7 \pm \sqrt{7^{2}-4(3)(-6)}}{6}$ OE	M1	Solving quadratic
$x=3$ only	A1	
	$\mathbf{3}$	

Answer	Marks	Guidance
$\mathrm{f}^{1}(12)=6$	M1	Substitute 12 into their $\mathrm{f}^{-1}(x)$ and evaluate
$\mathrm{g}\left(\mathrm{f}^{-1}(12)\right)=6 a+2$	M1	Substitute their ' 6 ' into $\mathrm{g}(x)$
$\mathrm{g}\left(\mathrm{g}\left(\mathrm{f}^{-1}(12)\right)\right)=a(6 a+2)+2=62$	M1	Substitute the result into $\mathrm{g}(x)$ and $=62$
$6 a^{2}+2 a-60[=0]$	M1	Forming and solving a 3-term quadratic
$a=-\frac{10}{3}$ or 3	A1	
Alternative method for Question $9(\mathrm{~d})$	M1	Substitute their $\mathrm{f}^{1}(x)$ or $\mathrm{g}(x)$ into $\mathrm{g}(x)$
$\mathrm{g}\left(\mathrm{f}^{-1}(x)\right)=a(\sqrt{x+4}+2)+2$ or $\mathrm{gg}(x)=a(a x+2)+2$	M1	Substitute the result into $\mathrm{g}(x)$
$\mathrm{g}\left(\mathrm{g}\left(\mathrm{f}^{-1}(x)\right)\right)=a(a(\sqrt{x+4}+2)+2)+2$	M1	Substitute 12 and $=62$
$\mathrm{~g}\left(\mathrm{~g}\left(\mathrm{f}^{-1}(12)\right)\right)=a(6 a+2)+2=62$	M1	Forming and solving a 3-term quadratic
$6 a^{2}+2 a-60[=0]$	A1	
$a=-\frac{10}{3}$ or 3	$\mathbf{5}$	

14.

Answer	Marks	Guidance
$\mathrm{ff}(x)=2\left(2 x^{2}+3\right)^{2}+3$	M1	Condone $=0$.
$8 x^{4}+24 x^{2}+21$	A1	ISW if correct answer seen. Condone $=0$.
	2	
$8 x^{4}+24 x^{2}+21=34 x^{2}+19 \Rightarrow 8 x^{4}+24 x^{2}-34 x^{2}+21-19[=0]$	M1	Equating $34 x^{3}+19$ to their 3 -term $\mathrm{ff}(x)$ and collect all terms on one side condone \pm sign errors.
$8 x^{4}-10 x^{2}+2[=0]$	A1	
$[2]\left(x^{2}-1\right)\left(4 x^{2}-1\right)$	M1	Attempt to solve 3-term quartic or 3-term quadratic by factorisation, formula or completing the square or factor theorem.
$\left[x^{2}=1 \text { or } \frac{1}{4} \text { leading to }\right] x=1 \text { or } x=\frac{1}{2}$	A1	If factorising, factors must expand to give $8 x^{4}$ or $4 x^{4} 4$ or their ax x^{4} otherwise M0A0 due to calculator use. Condone $\pm 1, \pm \frac{1}{2}$ but not $\sqrt{\frac{1}{4}}$ or $\sqrt{1}$.
	4	

15.

Answer		Marks	Guidance
$[\mathrm{fg}(x)=] 1 /(2 x+1)^{2}-1$		B1	SOI
$\begin{aligned} & 1 /(2 x+1)^{2}-1=3 \text { leading to } 4(2 x+1)^{2}=1 \\ & \text { or } \frac{1}{(2 x+1)}=[\pm] 2 \text { or } 16 x^{2}+16 x+3=0 \end{aligned}$		M1	Setting $\mathrm{fg}(x)=3$ and reaching a stage before $2 x+1= \pm 1 / 2$ or reaching a 3 term quadratic in x
$2 x+1= \pm 1 / 2$ or $2 x+1=-1 / 2$ or $(4 x+1)(4 x+3)[=0]$		A1	Or formula or completing square on quadratic
$x=-\frac{3}{4}$ only		A1	
Alternative method for Question 8(a)			
$x^{2}-1=3$		M1	
$\mathrm{g}(\mathrm{x})=-2$		A1	
$\frac{1}{(2 x+1)}=-2$		M1	
$x=-\frac{3}{4}$ only		A1	
		4	
Answer		Marks	Guidance
$y=\frac{1}{(2 x+1)^{2}}-1$ leading to $(2 x+1)^{2}=\frac{1}{y+1}$ leading to $2 x+1=[\pm] \frac{1}{\sqrt{y+1}}$		*M1	Obtain $2 x+1$ or $2 y+1$ as the subject
$x=[\pm] \frac{1}{2 \sqrt{y+1}}-\frac{1}{2}$		DM1	Make x (or y) the subject
$-\frac{1}{2 \sqrt{x+1}}-\frac{1}{2}$		A1	OE e.g. $-\frac{\sqrt{x+1}}{2 x+2}-\frac{1}{2},-\left(\sqrt{\frac{-x}{4 x+4}+\frac{1}{4}}+\frac{1}{2}\right)$
		3	
16.			
Answer	Marks		Guidance
$\left\{-3(x-2)^{2}\right\} \quad\{+14\}$	B1 B1	B1 for ea	ch correct term; condone $a=2, b=14$.
	2		
[$k=] 2$	B1	Allow [x]	,
	1		

Answer	Marks	Guidance
[Range is] [y] $\leqslant-13$	B1	Allow $[\mathrm{f}(x)] \leqslant-13,[\mathrm{f}] \leqslant-13$ but NOT $x \leqslant-13$.
	1	
$y=-3(x-2)^{2}+14 \text { leading to }(x-2)^{2}=\frac{14-y}{3}$	M1	Allow $\frac{y-14}{-3}$. Allow 1 error in rearrangement if x, y on opposite sides.
$x=2(\pm) \sqrt{\frac{14-y}{3}}$	A1	Allow $\frac{y-14}{-3}$.
$\left[\mathrm{f}^{-1}(x)\right]=2-\sqrt{\frac{14-x}{3}}$	A1	OE. Allow $\frac{x-14}{-3}$. Must be x on RHS; must be negative square root only.
Alternative method for question 8(d)		
$x=-3(y-2)^{2}+14 \text { leading to }(y-2)^{2}=\frac{14-x}{3}$	M1	Allow $\frac{x-14}{-3}$. Allow 1 error in rearrangement if x, y on opposite sides.
$=2(\pm) \sqrt{\frac{14-x}{3}}$	A1	Allow $\frac{x-14}{-3}$.
$\left[\mathrm{f}^{-1}(x)\right]=2-\sqrt{\frac{14-x}{3}}$	A1	OE. Allow $\frac{x-14}{-3}$. Must be x on RHS; must be negative square root only.
	3	
Answer	Marks	Guidance
$[\mathrm{g}(\mathrm{x})=]\left\{-3(x+3-2)^{2}\right\}+\{14+1\}$	B2, 1, 0	OR $\left\{-3(x+3)^{2}\right\}+\{12(x+3)\}+\{3\}$
$\mathrm{g}(x)=-3 x^{2}-6 x+12$	B1	
	3	

17.

Answer	Marks	Guidance
Stretch with [scale factor] either ± 2 or $\pm \frac{1}{2}$	B1	
Scale factor $\frac{1}{2}$ in the x-direction	B1	
Translation $\binom{0}{-3}$ or translation of 3 units in negative y-direction	B1	
	3	
$(10,9)$	B1 B1	B1 for each correct co-ordinate.
	$\mathbf{2}$	

18.

Answer	Marks	Guidance
$\mathrm{f}(5)=[2]$ and $\mathrm{f}($ their 2$)=[5]$ OR $\mathrm{ff}(5)=\left[\frac{2+3}{2-1}\right]$	M1	Clear evidence of applying ftwice with $x=5$.
OR $\frac{x+3}{\frac{x-1}{x+3}+3}$ and an attempt to substitute $x=5$.		
5	A1	
	$\mathbf{2}$	

Answer	Marks	Guidance
$\frac{x+3}{x-1}=y \Rightarrow x+3=x y-y$ OR $\frac{y+3}{y-1}=x \Rightarrow y+3=x y-x$	*M1	Setting $\mathrm{f}(x)=y$ or swapping x and y, clearing of fractions and expanding brackets. Allow \pm sign errors.
$x y-x=y+3 \Rightarrow x=\frac{y+3}{y-1}$ OE OR $y+3=x y-x \Rightarrow y=\left[\frac{x+3}{x-1}\right]$ OE	DM1	Finding x or $y=$. Allow \pm sign errors.
$\left[\mathrm{f}^{-1}(x)\right.$ or $\left.y\right]=\frac{x+3}{\boldsymbol{x}-1}$	A1	OE e.g. $1+\frac{4}{x-1}$ etc. Must be a function of x, cannot be $x=$.

19.

Answer	Marks	Guidance
\{Reflection\} $\{$ [in the] x-axis $\}$ or \{Stretch of scale factor -1$\}$ \{parallel to y -axis \}	*B1 DB1	\{\} indicate how the B1 marks should be awarded throughout.
Then $\{$ Translation $\}\left\{\binom{0}{3}\right\}$	B1 B1	Or Translation 3 units in the positive y-direction. N.B. If order reversed a maximum of 3 out of 4 marks awarded.
Alternative method for question 1		
\{Translation $\left\{\binom{0}{-3}\right\}$	B1 B1	Or Translation 3 units in the negative y-direction.
Then \{Reflection\} \{in the x-axis\} or $\{$ Stretch of scale factor -1$\}$ \{parallel to y-axis \}	*B1 DB1	N.B. If order reversed a maximum of 3 out of 4 marks awarded.
	4	

20.

Answer	Marks	Guidance
	B1	A reflection of the given curve in $y=x$ (the line $y=x$ can be implied by position of curve).

Answer	Marks	Guidance
$y=\frac{-x}{\sqrt{4-x^{2}}}$ leading to $x^{2}=y^{2}\left(4-x^{2}\right)$	*M1	Squaring and clearing the fraction. Condone one error in squaring $-x$ or y
$x^{2}\left(1+y^{2}\right)=4 y^{2}$	DM1	OE. Factorisation of the new subject with order of operations correct. Condone sign errors.
$x=(\pm) \frac{2 y}{\sqrt{1+y^{2}}}$	DM1	$x=(\pm) \sqrt{\left(\frac{4 y^{2}}{\left(1+y^{2}\right.}\right)}$ OE is acceptable for this mark. Isolating the new subject. Order of operations correct. Condone sign errors.
$\mathrm{f}^{-1}(x)=\frac{-2 x}{\sqrt{1+x^{2}}}$	A1	Selecting the correct square root. Must not have fractions in numerator or denominator.
	4	
1 or $a=1$	B1	Do not allow $x=1$ or $-1<x<1$
	1	
$[\mathrm{fg}(x)=\mathrm{f}(2 x)=] \frac{-2 x}{\sqrt{4-4 x^{2}}}$	B1	Allow $\frac{-2 x}{\sqrt{4-(2 x)^{2}}}$ or any correct unsimplified form.
$\mathrm{fg}(x)=\frac{-x}{\sqrt{1-x^{2}}} \text { or } \frac{-x}{1-x^{2}} \sqrt{1-x^{2}} \text { or } \frac{x}{x^{2}-1} \sqrt{1-x^{2}}$	B1	Result of cancelling 2 in numerator and denominator.
	2	

21.

Answer	Marks	Guidance
$2\left[\left\{(x-2)^{2}\right\}\{+3\}\right]$	B1 B1	B 1 for $a=2, \mathrm{~B} 1$ for $b=3$. $2(x-2)^{2}+6$ gains B1B0
	2	
\{Translation\} $\binom{\{2\}}{\{3\}}$ OR \{Stretch $\}\{y$ direction $\}\{$ factor 2$\}$	B2,1,0	B2 for fully correct, B1 with two elements correct. \{\} indicates different elements.
\{Stretch $\}\{y$ direction $\}$ \{factor 2$\}$ OR $\{$ Translation $\}\binom{\{2\}}{\{6\}}$	B2,1,0	B2 for fully correct, B1 with two elements correct. \{\} indicates different elements.
	4	

22.

Answer	Marks	Guidance
$\left[x^{\frac{1}{2}}=\right] \frac{4 \pm \sqrt{16-4}}{2}=2 \pm \sqrt{3}$	M1 A1	OE. Answer must come from formula or completing square. If M0A0 scored then SC B1 for $2 \pm \sqrt{3}$ only.
$[x=](2 \pm \sqrt{3})^{2}$	M1	Attempt to square their $2 \pm \sqrt{3}$
$7+4 \sqrt{3}, 7-4 \sqrt{3}$	A1	Accept $7 \pm 4 \sqrt{3}$ or $a=7, b= \pm 4, c=3$ SC B1 instead of second M1A1 for correct final answer only.
Alternative method for question 9(a)		
$-4 x^{\frac{1}{2}}+1=0$ leading to $(x+1)^{2}=16 x$ leading to $x^{2}-14 x+1=0$	*M1 A1	OE
$x=\frac{14 \pm \sqrt{196-4}}{2}$	DM1	Attempt to solve for x
$7+4 \sqrt{3}, 7-4 \sqrt{3}$	A1	SC B1 instead of second M1A1 for correct final answer only.
	4	
$[\operatorname{gh}(x)=] m\left(x^{\frac{1}{2}}-2\right)^{2}+n$	M1	SOI
$[\operatorname{gh}(x)=] m\left(x-4 x^{\frac{1}{2}}+4\right)+n \equiv x-4 x^{\frac{1}{2}}+1$	A1	SOI
$m=1, n=-3$	A1 A1	WWW
	4	

23.

Answer	Marks	Guidance
$y=\frac{x^{2}-4}{x^{2}+4}$ leading to $\left(x^{2}+4\right) y=\left(x^{2}-4\right)$ leading to $x^{2} y+4 y=x^{2}-4$	*M1	For clearing denominator and expanding brackets. If swap variables first, look for $y^{2} x+4 x=y^{2}-4$.
$x^{2} y-x^{2}=-4 y-4$ leading to $x^{2}(1-y)=4 y+4$ leading to $x^{2}=\ldots$	DM1	For making x^{2} the subject. If swap variables first, look for $y^{2}(1-x)=4 x+4 \Rightarrow y^{2}=\ldots$
$x^{2}=\frac{4 y+4}{1-y}$ leading to $x=\sqrt{\frac{4 y+4}{1-y}}$ leading to $\left[\mathrm{f}^{-1}(x)\right]=\sqrt{\frac{4 x+4}{1-x}}$	A1	OE e.g. $\sqrt{\frac{-4 x-4}{x-1}}$ without \pm in final answer.

Alternative method for Q6(a)

$x=\frac{y^{2}-4}{y^{2}+4}$ leading to $x=1-\frac{8}{y^{2}+4}$ leading to $x-1=\frac{-8}{y^{2}+4}$	*M1	For division and reaching $x-1=\ldots \quad($ or $y-1=\ldots)$
$y^{2}+4=\frac{-8}{x-1}$ leading to $y^{2}=\frac{-8}{x-1}-4$	DM1	For making $y^{2}\left(\right.$ or $\left.x^{2}\right)$ the subject.
$[y=]\left[\mathrm{f}^{-1}(x)\right]=\sqrt{\frac{-8}{x-1}-4}$	A1	OE without \pm in final answer.
	$\mathbf{3}$	

Answer	Marks	Guidance
$1-\frac{8}{x^{2}+4}=\frac{x^{2}+4}{x^{2}+4}-\frac{8}{x^{2}+4}\left[=\frac{x^{2}+4-8}{x^{2}+4}\right]=\frac{x^{2}-4}{x^{2}+4}$	M1 A1	Using common denominator or division to reach 1. Remainder -8 . WWW
$0<\mathrm{f}(x)<1$	B1 B1	B1 for each correct inequality. B0 if contradictory statement seen. Accept $\mathrm{f}(x)>0, \mathrm{f}(x)<1 ; 1>\mathrm{f}(x)>0 ;(0,1)$ SC B1 for $0 \leqslant \mathrm{f}(x) \leqslant 1$.
	4	
Because the range of f does not include the whole of the domain of f (or any of it)	B1	Accept an answer that includes an example outside the domain of f, e.g. $f(4)=\frac{12}{20}$. Must refer to the domain or $>$ 2. Need not explicitly use the term 'domain' but must not refer just to the range.
	1	

24.

Answer	Marks	Guidance
$x \neq 1$ or $x<1, x>1$ or $(-\infty, 1),(1, \infty) \quad[x \in \mathbb{R}]$	B1	Must be x not $\mathrm{f}^{-1}(x)$ or y. Do not accept $1<x<1$.
	1	
$y=\frac{2 x+1}{2 x-1}$ leading to $(2 x-1) y=2 x+1$ leading to $2 x y-y=2 x+1$	*M1	Setting $y=$, removing fraction and expanding brackets.
$2 x y-2 x=y+1$ leading to $2 x(y-1)=y+1$ leading to $x=\frac{y+1}{2(y-1)}$	DM1	Reorganising to get $x=$. Condone \pm sign errors only.
$\left[\mathrm{f}^{-1}(x)\right]=\frac{x+1}{2(x-1)}, \frac{x+1}{x-1} \times \frac{1}{2}$ or $\frac{1}{x-1}+\frac{1}{2}$	A1	OE. Must be in terms of x. Do not allow $\frac{x+1}{x-1} \div 2$.
	3	
$\left(\right.$ their $\left.f^{-1}(3)\right)$ leading to $\left(\text { their } f^{-1}(3)\right)^{2}+4 \quad\left[f^{-1}(3)=1,1+4=\right]$	M1	Correct order of operations and substitution of $x=3$ needed.
5	A1	
	2	
Sight of 'not one to one' or 'many to one' or 'one to many'	B1	Any reason mentioning 2 values, or + and -, such as: square root gives 2 values or horizontal line test crosses curve twice or 2 values because of turning point or 2 values because it is a quadratic.
	1	
Answer	Marks	Guidance
$\mathrm{f}(x)=1+\frac{2}{2 x-1}=\frac{2 x-1}{2 x-1}+\frac{2}{2 x-1}=\frac{2 x+1}{2 x-1}$	B1	AG Do not condone equating expressions and verification.
$\mathrm{f}^{\prime}(x)=-4(2 x-1)^{-2}$ or $2(2 x-1)^{-1}+\left\{-(2 x+1) 2(2 x-1)^{-2}\right\}$ or $\frac{(2 x-1) 2-2(2 x+1)}{(2 x-1)^{2}}$	*M1	For $k(2 x-1)^{-2}$ and no other terms or correct use of the product or quotient rule then ISW.
Gradient $m=-4$	A1	Differentiation must have clearly taken place.
Equation of tangent is $y-3=-4(x-1) \quad[\Rightarrow y=-4 x+7]$	DM1	Using (1,3) in the equation of a line with their gradient.
Crosses axes at $\left(\frac{7}{4}, 0\right)$ and $(0,7)$	A1 FT	SOI from their straight line or by integration from 0 to 'their 7/4'.
$[\text { Area }=] \frac{49}{8}$	A1	OE e.g. 6.13 AWRT. If M0 A0 DM0, SC B2 available for correct answer.
	6	

25.

Answer	Marks	Guidance
$\left\{2(x-4)^{2}\right\}\{-9\}$	B1 B1	OE When a and b stated give priority to marking algebraic expression.
$y>-7$	$\mathbf{2}$	
	$\mathbf{B 1}$	Allow $\mathrm{f}(x)>-7$ or $(-7, \infty)$ Don't allow $x>-7$.
$(x-4)^{2}=\frac{y+9}{2}$	$\mathbf{1}$	
$x=4[\pm] \sqrt{\frac{y+9}{2}}$	M1	2 operations correct. Allow a sign error.
$\left[\mathrm{f}^{-1}(x)=\right] 4-\sqrt{\frac{x+9}{2}}$	M1	2 operations correct. Allow a sign error.
$\mathrm{fg}(x)=\mathrm{f}(2 x+4)=2(2 x+4-4)^{2}-9$	A1 FT	OE FT on their answer to (a) i.e. $\left.-a-\sqrt{\left(\frac{x-b}{2}\right)}\right)$.
$8 x^{2}-9$ only	$\mathbf{3}$	

26.

Answer	Marks	Guidance
$\mathrm{f}^{\prime}(x)=-3(-1)(4)(4 x-p)^{-2}\left[=\frac{12}{(4 x-p)^{2}}\right]$	B2, 1, 0	
>0 Hence increasing function	B1FT	Correct conclusion from their $\mathrm{f}^{\prime}(x)$.
	3	
$y=2-\frac{3}{4 x-p} \Rightarrow(y-2)(4 x-p)=-3 \text { or } 4 x y-p y=8 x-2 p-3$	M1	OE Form horizontal equation. Sign errors only, no missing terms. May go directly to $4 y=p-\frac{3}{x-2}$ OE M1 M1
$4 x y-8 x=p y-2 p-3 \Rightarrow 4 x(y-2)=p(y-2)-3$ or $4 x=-\frac{3}{x-2}+p$	M1	OE Factorise out $[4] x$ or $[4] y$.
$x=\frac{p(y-2)-3}{4(y-2)}\left[\Rightarrow x=\frac{p}{4}-\frac{3}{4 y-8}\right] \text { or } \frac{-\frac{3}{x-2}+p}{4}$	M1	OE Make x (or y) the subject.
$\left[\mathrm{f}^{-1}(x)=\right] \frac{p}{4}-\frac{3}{4 x-8}$	A1	OE in correct form (must be in terms of x).
	4	
[$p=] 8$	B1	
	1	

27.

Answer	Marks	Guidance
$(x-2)^{2}+5$	B1	
	$\mathbf{1}$	
$2\left(\left\{(x+1)^{2}\right\}+\{5\}\right)$	B2, 1,0	
$[g(x)=] 2 \mathrm{f}(x+3)$ or $k=2, h=3$	$\mathbf{2}$	
	B1	In correct form. B0 if contradiction.
$\left\{\right.$ Translation $\left\{\left\{\binom{-3}{0}\right\}\right.$	$\mathbf{B 2 , 1 , 0} \mathbf{~ F T}$	FT on their $x+3$ or $h=3$.
$\{$ Stretch $\}\{y$ direction, factor 2$\}$	B2, 1,0 FT	FT on their 2 or $k=2$.
	$\mathbf{4}$	

28.

Answer	Marks	Guidance
Three points at the bottom of their transformed graph plotted at y $=2$	B1	All 5 points of the graph must be connected.
Bottom three points of M at $x=0, x=1 \& x=2$	B1	Must be this shape.
All correct	B1	Condone extra cycles outside $0 \leqslant x \leqslant 2$.
	$\mathbf{3}$	SC: If B0 B0 scored, B1 available for \wedge in one of correct positions or all 5 points correctly plotted and not connected or correctly sized shape in the wrong position.
$[\mathrm{g}(x)=] \mathrm{f}(2 x)+1$	B1 B1	Award marks for their final answer as follows: $\mathrm{f}(2 x)$ B1, +1 B1. Condone $y=$ or $f(x)=$.
	$\mathbf{2}$	

29.

Answer	Marks	Guidance
$a\left(x+\frac{1}{x}\right)+1$	B1	ISW
	1	

Answer	Marks	Guidance
$a\left(2+\frac{1}{2}\right)+1=11$	M1	Substitute $x=2$ into their expression from (a) and equate to 11 . This may be done in 2 stages: $f(2)=2.5, g(2.5)=11$.
[$a=] 4$	A1	
	2	
No,[because it is] not one-one	B1	Or other suitable explanation that may include one to many or many to one.
	1	
$\left[\mathrm{g}^{-1}(x)\right]=\frac{x-1}{5}$ WWW	B1	Condone use of a instead of 5.
$\left[g^{-1} \mathrm{f}(x)=\right] \frac{x+\frac{1}{x}-1}{5} \text { OE }$	M1	Correct combination of their $\mathrm{g}^{-1}(x)$ with given $\mathrm{f}(x)$ Condone use of a instead of 5 .
$\frac{x^{2}-x+1}{5 x}$ or $\frac{1}{5}\left(x+\frac{1}{x}-1\right)$ or $\frac{1}{5}\left(x+x^{-1}-1\right)$ OE ISW	A1	Must not contain unresolved fractions e.g. $\frac{x+x^{-1}-1}{5}$.
	3	
The domain of f does not include the whole of the range of g. Or The range of g does not lie in the domain of f.	B1	Accept an answer that includes an example outside the domain of f, e.g. $g(-1)=-4$ but for $\mathrm{f}, x>0$.
	1	

30.

Answer	Marks	Guidance
$[\mathrm{f}(x)]=\left\{-2(x+2)^{2}\right\}-\{5\}$	B1 B1	
	2	
$[\mathrm{f}(x)]<-7$	B1	Allow $y<-7,<-7,(-\infty,-7)$ or less than -7 $-\infty\langle f(x)\langle-7,-7\rangle f(x)\rangle-\infty, f<-7$
	1	
$y=-2(x+2)^{2}-5 \rightarrow(x+2)^{2}=\frac{-(y+5)}{2}$	M1	Operations correct. Allow sign errors. FT their quadratic from (a).
$x=[\pm] \sqrt{\frac{-(y+5)}{2}}-2$	M1	Operations correct. Allow sign errors. FT their quadratic from (a).
$\left[\mathrm{f}^{-1}(x)\right]=-2-\sqrt{\frac{-(x+5)}{2}} \text { or }-2-\sqrt{-\frac{(x+5)}{2}}$	A1	Allow $\left[\mathrm{f}^{-1}(x)\right]=-2-\sqrt{\frac{x+5}{-2}}$.
	3	

31.

Answer	Marks	Guidance
3	B1	Ignore any description.
2	$\mathbf{1}$	
	B1	Ignore any description.
$(8,2)$	$\mathbf{1}$	
	B1 B1	Ignore any description. Allow vector notation and absence of brackets.
	2	

Answer	Marks	Guidance
$(1,5)$	B1 FT	FT each coordinate, (their8 - 7, their2 + 3) Allow

32.

Answer	Marks	Guidance
Stretch: $(2 x)^{2}-2(2 x)+5$ or $(x-1)^{2}+4$ leading to $(2 x-1)^{2}+4$	M1	Replacing x by $2 x$.
Reflection: $(-2 x)^{2}-2(-2 x)+5$ or $(-2 x-1)^{2}+4$	M1	Replacing x by $-x$. FT on their stretch.
Stretch: $3\left\{(-2 x)^{2}-2(-2 x)+5\right\}$ or $3\left\{(-2 x-1)^{2}+4\right\}$	M1	Multiplying the whole function by 3. FT on their (stretch plus reflection).
$12 x^{2}+12 x+15$	A1	
	$\mathbf{4}$	

33.

Answer	Marks	Guidance
$[y] \leqslant-1$	B1	Accept f or $\mathrm{f}(x) \leqslant-1,-\infty<y \leqslant-1,(-\infty,-1]$. Do not accept $x \leqslant-1$.
	1	
$y=-3 x^{2}+2$ rearranged to $3 x^{2}=2-y$, leading to $x^{2}=\frac{2-y}{3}$ or $y^{2}=\frac{2-x}{3}$	M1	
$x=[\pm] \sqrt{\frac{2-y}{3}} \rightarrow\left[\mathrm{f}^{-1}(x)\right]=\{-\}\left\{\sqrt{\frac{2-x}{3}}\right\}$	A1 A1	Al for minus, Al for $\sqrt{\frac{2-x}{3}}$, allow $-\sqrt{\frac{x-2}{-3}}$.
	3	
$\mathrm{fg}(x)=-3\left(-x^{2}-1\right)^{2}+2$	M1	SOI expect $-3 x^{4}-6 x^{2}-1$.
$\mathrm{gf}(x)=-\left(-3 x^{2}+2\right)^{2}-1$	M1	SOI expect $-9 x^{4}+12 x^{2}-5$.
$\mathrm{fg}(x)-\mathrm{gf}(x)+8=0$ leading to $6 x^{4}-18 x^{2}+12 \quad[=0]$	A1	OE
[6] $\left(x^{2}-1\right)\left(x^{2}-2\right)[=0]$ or formula or completion of the square	M1	Solving a 3-term quadratic equation in x^{2} must be seen.
$x=-1,-\sqrt{2}$ only these two solutions	A1	Allow $-\sqrt{1} 1,-1.41[4]$ Answers only SC B1.
	5	

34.

Answer	Marks	Guidance
$\{$ Stretch $\}\{$ factor 2\} \{in y-direction \}	$\mathbf{B 2 , 1 , 0}$	B2 for fully correct, B1 with two elements correct. $\}$ indicates different elements.
$\{$ Translation $\}\binom{\{-6\}}{\{0\}}$	$\mathbf{B 2 , 1 , 0}$	B2 for fully correct, B1 with two elements correct. $\}$ indicates different elements.
	$\mathbf{4}$	Transformations may be in either order.

35.

Answer	Marks	Guidance
$\begin{aligned} & 1+\frac{2 a}{7-a}=\frac{5}{2}\left[\Rightarrow \frac{2 a}{7-a}=\frac{3}{2} \Rightarrow 7 a=21\right] \Rightarrow a=\ldots \\ & \text { OR } 1+\frac{2 a}{7-a}=\frac{5}{2}\left[\Rightarrow(7-a)+2 a=\frac{5}{2}(7-a)[\Rightarrow 7 a=21] \Rightarrow a=\ldots\right. \end{aligned}$	M1	OE Substitute $x=7$ then solve for a via legitimate mathematical steps. Condone sign errors only.
$a=3$	A1	If M0, SC B1 for $a=3$ with no working.
$\begin{aligned} & \mathrm{f}(5)=1+\frac{2(\text { their } 3)}{5-\text { their } 3}=4[\Rightarrow 4 b-2=4] \Rightarrow b=\ldots \\ & \text { OR } \operatorname{gf}(5)=b\left(1+\frac{2(\text { their } 3)}{5-\text { their } 3}\right)-2[\Rightarrow 4 b-2=4] \Rightarrow b=\ldots \end{aligned}$	M1	Evaluate $f(5)$, either separately or within gf then solve for b via legitimate mathematical steps. Condone sign errors only. FT their a value.
$b=\frac{3}{2}$	A1	$\text { OE e.g. } \frac{6}{4}, 1.5 \text {. }$
	4	
$x>1$	B1	Accept $(1, \infty)$ or $\left\{{ }^{*}: *>1\right\}$ where * is any variable. B 0 for $\mathrm{f}^{-1}(x)>1$ or $\mathrm{f}(x)>1$ or $y>1$.
	1	
Answer	Marks	Guidance
$\begin{aligned} & \text { EITHER } x-1=\frac{6}{y-3}[\Rightarrow(y-3)(x-1)=6] \\ & \text { OR } x=1+\frac{6}{y-3} \Rightarrow x(y-3)=(y-3)+6 \end{aligned}$	*M1	OE $y-1=\frac{6}{x-3} \Rightarrow(x-3)(y-1)=6$. OE $y=1+\frac{6}{x-3} \Rightarrow y(x-3)=(x-3)+6$. Allow *M1 for use of their 3 from (a).
$y-3=\frac{6}{x-1} \text { or } y(x-1)=3 x+3$	DM1	OE $x-3=\frac{6}{y-1}$ or $x(y-1)=3 y+3$. Allow DM1 for use of their 3 from (a).
$\left[\mathrm{f}^{-1}(x)\right]=3+\frac{6}{x-1}$	A1	OE Correct answer e.g. $\frac{3 x+3}{x-1}$ ISW. Must be in terms of x.
		*M1 DM1 possible for ' a ' used, but A0 so max $2 / 3$.
	3	

36.

Answer	Marks	Guidance
$\{$ Translation $\}\binom{\{0\}}{\{-2\}}$	B2, 1,0	B2 for fully correct, B1 with two elements correct. $\}$ indicates different elements.
$\{$ Stretch $\}\{$ scale $\}$ factor 2\} \{parallel to x-axis $\}$	B2, 1, 0	B2 for fully correct, B1 with two elements correct.
	$\mathbf{4}$	Transformations can be in either order.

37.

(a)	$x^{2}+6 x-8=(x+3)^{2}-17$ OR $2 x+6=0 \rightarrow x=-3 \rightarrow y=-17$	2	B1B1	B1 for $(x+3)^{2}$, B1 for -17 OR B1 for $x=-3$, B1 for $y=-17$
	Range $\mathrm{f}(x) \geqslant-17$	1	B1FT	FT; following through visible method
		3		
(b)	$(x-k)(x+2 k)=0 \equiv x^{2}+5 x+b=0$	1	M1	Realises the link between roots and the equation
	$k=5$	1	A1	Comparing coefficients of x
	$b=-2 k^{2}=-50$	1	A1	
		3		
(c)	$(x+a)^{2}+a(x+a)+b=a$	1	M1*	Replaces ' x ' by ' $x+a$ ' in 2 terms
	Uses $b^{2}-4 a c, 9 a^{2}-4\left(2 a^{2}+b-a\right)$	1	DM1	Any use of discriminant
	$a^{2}<4(b-a)$	1	A1	AG
		3		

38.

(a)	$\left[(x-2)^{2}\right][-1]$	B1 B1
		2
, b)	$\begin{aligned} & \text { Smallest } c=2 \\ & (\mathbf{F T} \text { on their part (a)) } \end{aligned}$	B1FT
		1
(c)	$y=(x-2)^{2}-1 \rightarrow(x-2)^{2}=y+1$	*M1
	$x=2(\pm) \sqrt{y+1}$	DM1
	$\left(\mathrm{f}^{-1}(x)\right)=2+\sqrt{x+1}$ for $x>8$	A1
		3
(d)	$\operatorname{gf}(x)=\frac{1}{(x-2)^{2}-1+1}=\frac{1}{(x-2)^{2}} \quad \mathrm{OE}$	B1
	Range of gf is $0<\operatorname{gf}(x)<\frac{1}{9}$	B1 B1
		3

39.

(a)	$\text { Translation }\binom{1}{0}$	B1	Allow shift and allow by 1 in x-direction or [parallel to/on/in/ along/against] the x-axis or horizontally. 'Translation by 1 to the right' only, scores B0
	Stretch	B1	Stretch. SC B2 for amplitude doubled.
	Factor 2 in y-direction	B1	With/by factor 2 in y-direction or [parallel to/on/in/along/against] the y-axis or vertically or with x axis invariant 'With/by factor 2 upwards' only, scores B0. Accept SF as an abbreviation for scale factor.
		3	Note: Transformations can be in either order
(b)	$[-\sin 6 x][+15 x]$ or $[\sin (-6 x)][+15 x]$ OE	B1 B1	Accept an unsimplified version. ISW. B1 for each correct component - square brackets indicate each required component.
			If B $0, \mathbf{S C}$ B1 for either $\sin (-2 x)+5 x$ or $-\sin (2 x)+5 x$ or $\sin 6 x-15 x$ or $\sin \left(-\frac{2}{3} x\right)+\frac{5}{3} x$
		2	

40.

(a)
(b)

$\mathrm{f}(x)=(x-1)^{2}+4$	B1	
$\mathrm{g}(x)=(x+2)^{2}+9$	B1	
$g(x)=f(x+3)+5$	B1 B1	B1 for each correct element. Accept $p=3, q=5$
	$\mathbf{4}$	
Translation or Shift	B1	
$\binom{-3}{5}$ or acceptable explanation	B1 FT	If given as 2 single translations both must be described correctly e.g. $\binom{-3}{0} \&\binom{0}{5}$ FT from their $\mathrm{f}(x+p)+q$ or their $\mathrm{f}(x) \rightarrow \mathrm{g}(x)$
Do not accept $\binom{1}{4} \mathrm{or}\binom{-2}{9}$		

41.

(a)	$\left\{(x+1)^{2}+2(x+1)-5\right\}+\{3\}$, or $\left\{(x+1+1)^{2}\right\}+\{-6+3\}$	M1 M1	M1 for dealing with $\binom{-1}{0}$ and M1 for dealing with $\binom{0}{3}$.
	$[y=] x^{2}+4 x+1$	A1	Answer only given full marks.
		$\mathbf{3}$	
b)	$\{$ Stretch $\}\{x$ direction or horizontally or y-axis invariant $\}\{$ factor $1 / 2\}$	B2, 1,0	Additional transformation B0.
		$\mathbf{2}$	

42.

(a)	$[y]<2$ OR $[\mathrm{f}(x)]<2$	B1	OE e.g. $f<2,(-\infty, 2),-\infty<f[x]<2$. Do not accept $x<2$ or $\mathrm{f}(\mathrm{x}) \leqslant 2$.
		1	
(b)	$y=2-\frac{5}{x+2}$ leading to $y(x+2)=2(x+2)-5$ leading to $x y+2 y=2 x-1$	M1	or $\frac{5}{x+2}=2-y$ (allow sign errors).
	$2 y+1=2 x-x y$ leading to $2 y+1=x(2-y)$	DM1	or $\frac{5}{2-y}=x+2$ (allow sign errors).
	$x=\frac{2 y+1}{2-y} \rightarrow \mathrm{f}^{-1}(x)=\frac{2 x+1}{2-x}$	A1	OE or $y=\frac{5}{2-x}-2$.
	Domain is $x<2$	B1 FT	FT on the numerical part of their range from part (a), including $x \neq 2$ not penalized. No FT for $x \in \mathcal{R}, x=k, x \neq k$.
		4	
(c)	$\operatorname{fg}(x)=2-\frac{5}{x+3+2}$	B1	
	$=\frac{2(x+5)-5}{x+5} \text { or } \frac{2(x+5)}{x+5}-\frac{5}{x+5}$	M1	Use of their common denominator.
	$=\frac{2 x+5}{x+5}$	A1	
		3	

