PURE MATHEMATICS - 1

9709

(March, June and November series 2020 - 2023 With marking scheme)

Functions

Exercise - 1

HARSHIL MITTAL (A LEVEL) KOTHARI INTERNATIONAL SCHOOL NOIDA

Functions f and g are defined by

$$f: x \mapsto 3x + 2, \quad x \in \mathbb{R},$$
$$g: x \mapsto 4x - 12, \quad x \in \mathbb{R}.$$

Solve the equation $f^{-1}(x) = gf(x)$.

(a) The curve $y = x^2 + 3x + 4$ is translated by $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$.

Find and simplify the equation of the translated curve. [2]

(b) The graph of y = f(x) is transformed to the graph of y = 3f(-x).

Describe fully the two single transformations which have been combined to give the resulting transformation. [3]

Question 5: 9709/01/SP/20

Question 2: 9709/01/SP/20

3.

4.

The graph of y = f(x) is transformed to the graph of $y = 1 + f(\frac{1}{2}x)$.

Describe fully the two single transformations which have been combined to give the resulting transformation. [4]

Question 2: 9709/12/FM/20

(a) Express $2x^2 + 12x + 11$ in the form $2(x + a)^2 + b$, where a and b are constants.	[2]
The function f is defined by $f(x) = 2x^2 + 12x + 11$ for $x \le -4$.	
(b) Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3]
The function g is defined by $g(x) = 2x - 3$ for $x \le k$.	
(c) For the case where $k = -1$, solve the equation $fg(x) = 193$.	[2]
(d) State the largest value of k possible for the composition fg to be defined.	[1]
Question 9: 970	9/12/FM/20

5.

Functions f and g are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto \frac{1}{2}x - a,$$
$$g: x \mapsto 3x + b,$$

where a and b are constants.

- (a) Given that gg(2) = 10 and $f^{-1}(2) = 14$, find the values of a and b. [4]
- (b) Using these values of a and b, find an expression for gf(x) in the form cx + d, where c and d are constants. [2]

Question 6: 9709/11/MJ/20

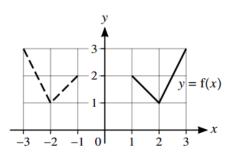
2.

[4]

The function f is defined for $x \in \mathbb{R}$ by

 $f: x \mapsto a - 2x$,

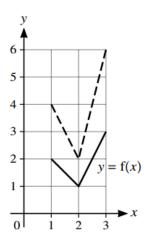
where a is a constant.


- (a) Express ff(x) and $f^{-1}(x)$ in terms of a and x. [4]
- (b) Given that $ff(x) = f^{-1}(x)$, find x in terms of a. [2]

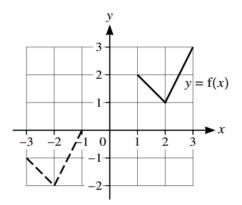
Question 5: 9709/12/MJ/20

In each of parts (a), (b) and (c), the graph shown with solid lines has equation y = f(x). The graph shown with broken lines is a transformation of y = f(x).

(a)


7.

State, in terms of f, the equation of the graph shown with broken lines.


[1]

(b)

State, in terms of f, the equation of the graph shown with broken lines.

[1]

State, in terms of f, the equation of the graph shown with broken lines. [2]

Question 3: 9709/13/MJ/20

8.

The functions f and g are defined by

- $\begin{aligned} f(x) &= x^2 + 3 & \text{for } x > 0, \\ g(x) &= 2x + 1 & \text{for } x > -\frac{1}{2}. \end{aligned}$
- (a) Find an expression for fg(x). [1]
- (b) Find an expression for $(fg)^{-1}(x)$ and state the domain of $(fg)^{-1}$. [4]
- (c) Solve the equation fg(x) 3 = gf(x). [4]

Question 11: 9709/11/ON/20

9.

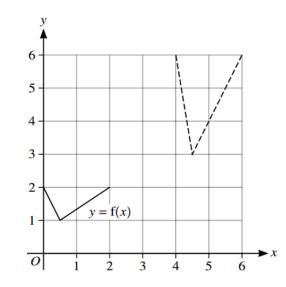
Functions f and g are defined by

$$f(x) = 4x - 2, \text{ for } x \in \mathbb{R},$$
$$g(x) = \frac{4}{x+1}, \text{ for } x \in \mathbb{R}, x \neq -1.$$

- (a) Find the value of fg(7). [1]
- (**b**) Find the values of x for which $f^{-1}(x) = g^{-1}(x)$. [5]

Question 5: 9709/12/ON/20

10.


The function f is defined by
$$f(x) = \frac{2x}{3x-1}$$
 for $x > \frac{1}{3}$.

(a) Find an expression for
$$f^{-1}(x)$$
. [3]

(b) Show that
$$\frac{2}{3} + \frac{2}{3(3x-1)}$$
 can be expressed as $\frac{2x}{3x-1}$. [2]

Question 6: 9709/13/ON/20

[1]

In the diagram, the graph of y = f(x) is shown with solid lines. The graph shown with broken lines is a transformation of y = f(x).

- (a) Describe fully the two single transformations of y = f(x) that have been combined to give the resulting transformation. [4]
- (b) State in terms of y, f and x, the equation of the graph shown with broken lines. [2]

Question 5: 9709/12/FM/21

12.

Functions f and g are defined as follows:

$$f: x \mapsto x^2 + 2x + 3 \text{ for } x \leq -1,$$

g: x \mapsto 2x + 1 for x \ge -1.

- (a) Express f(x) in the form $(x + a)^2 + b$ and state the range of f. [3]
- (b) Find an expression for $f^{-1}(x)$. [2]
- (c) Solve the equation gf(x) = 13. [3]

Question 7: 9709/12/FM/21

[1]

13.

Functions f and g are defined as follows:

 $f(x) = (x - 2)^2 - 4 \text{ for } x \ge 2,$ $g(x) = ax + 2 \text{ for } x \in \mathbb{R},$

where a is a constant.

(a) State the range of f.

- (b) Find $f^{-1}(x)$. [2] (c) Given that $a = -\frac{5}{2}$, solve the equation f(x) = g(x). [3]
- (c) Given that $a = -\frac{5}{3}$, solve the equation f(x) = g(x). [3] Question 9: 9709/11/MJ/21

The function f is defined by $f(x) = 2x^2 + 3$ for $x \ge 0$.

- (a) Find and simplify an expression for ff(x). [2]
- (b) Solve the equation $ff(x) = 34x^2 + 19$. [4]

15.

Functions f and g are defined as follows:

$$f: x \mapsto x^2 - 1 \text{ for } x < 0,$$
$$g: x \mapsto \frac{1}{2x+1} \text{ for } x < -\frac{1}{2}.$$

(a)	Solve the equation $fg(x) = 3$.	[4	
------------	----------------------------------	----	--

(**b**) Find an expression for $(fg)^{-1}(x)$.

Question 8: 9709/13/MJ/21

[3]

Question 5: 9709/12/MJ/21

16.

(a) Express $-3x^2 + 12x + 2$ in the form $-3(x - a)^2 + b$, where *a* and *b* are constants. [2] The one-one function f is defined by $f: x \mapsto -3x^2 + 12x + 2$ for $x \le k$.

- (b) State the largest possible value of the constant *k*. [1]
- It is now given that k = -1.
- (c) State the range of f. [1]
- (d) Find an expression for $f^{-1}(x)$. [3]

The result of translating the graph of y = f(x) by $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ is the graph of y = g(x).

(e) Express g(x) in the form $px^2 + qx + r$, where p, q and r are constants. [3]

Question 8: 9709/11/ON/21

17.

The graph of y = f(x) is transformed to the graph of y = f(2x) - 3.

(a) Describe fully the two single transformations that have been combined to give the resulting transformation. [3]

The point P(5, 6) lies on the transformed curve y = f(2x) - 3.

(b) State the coordinates of the corresponding point on the original curve y = f(x). [2]

Question 2: 9709/12/ON/21

The function f is defined as follows:

$$f(x) = \frac{x+3}{x-1}$$
 for $x > 1$.

(a) Find the value of ff(5).

(**b**) Find an expression for $f^{-1}(x)$.

Question 3: 9709/12/ON/21

19.

The graph of y = f(x) is transformed to the graph of y = 3 - f(x).

Describe fully, in the correct order, the two transformations that have been combined. [4]

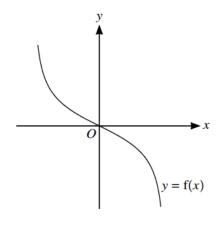
Question 1: 9709/13/ON/21

20.

The diagram shows the graph of y = f(x).

(a) On this diagram sketch the graph of $y = f^{-1}(x)$. [1]

It is now given that $f(x) = -\frac{x}{\sqrt{4-x^2}}$ where -2 < x < 2.


(b) Find an expression for $f^{-1}(x)$. [4]

The function g is defined by g(x) = 2x for -a < x < a, where a is a constant.

- (c) State the maximum possible value of *a* for which fg can be formed. [1]
- (d) Assuming that fg can be formed, find and simplify an expression for fg(x). [2]

Question 6: 9709/13/ON/21

(a) Express
$$2x^2 - 8x + 14$$
 in the form $2[(x-a)^2 + b]$. [2]

[2]

[3]

The functions f and g are defined by

$$f(x) = x^2 \quad \text{for } x \in \mathbb{R},$$

$$g(x) = 2x^2 - 8x + 14 \quad \text{for } x \in \mathbb{R}.$$

(b) Describe fully a sequence of transformations that maps the graph of y = f(x) onto the graph of y = g(x), making clear the order in which the transformations are applied. [4]

Question 5: 9709/12/FM/22

22.

Functions f, g and h are defined as follows:

- f: $x \mapsto x 4x^{\frac{1}{2}} + 1$ for $x \ge 0$, g: $x \mapsto mx^2 + n$ for $x \ge -2$, where *m* and *n* are constants, h: $x \mapsto x^{\frac{1}{2}} - 2$ for $x \ge 0$.
- (a) Solve the equation f(x) = 0, giving your solutions in the form $x = a + b\sqrt{c}$, where a, b and c are integers. [4]
- (b) Given that $f(x) \equiv gh(x)$, find the values of *m* and *n*.

Question 9: 9709/12/FM/22

[4]

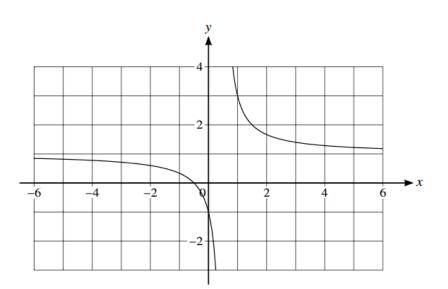
[1]

23.

The function f is defined as follows:

$$f(x) = \frac{x^2 - 4}{x^2 + 4}$$
 for $x > 2$.

(a) Find an expression for
$$f^{-1}(x)$$
. [3]


(b) Show that
$$1 - \frac{8}{x^2 + 4}$$
 can be expressed as $\frac{x^2 - 4}{x^2 + 4}$ and hence state the range of f. [4]

(c) Explain why the composite function ff cannot be formed.

Question 6: 9709/11/MJ/22

Functions f and g are defined as follows:

$$f(x) = \frac{2x+1}{2x-1} \quad \text{for } x \neq \frac{1}{2},$$
$$g(x) = x^2 + 4 \quad \text{for } x \in \mathbb{R}.$$

The diagram shows part of the graph of y = f(x).

	State the domain of f^{-1} .	[1]
(b)	Find an expression for $f^{-1}(x)$.	[3]
(c)	Find $gf^{-1}(3)$.	[2]

- (d) Explain why $g^{-1}(x)$ cannot be found.
- (e) Show that $1 + \frac{2}{2x-1}$ can be expressed as $\frac{2x+1}{2x-1}$. Hence find the area of the triangle enclosed by the tangent to the curve y = f(x) at the point where x = 1 and the *x* and *y*-axes. [6]

Question 10: 9709/12/MJ/22

[1]

25.

The function f is defined by $f(x) = 2x^2 - 16x + 23$ for x < 3.

(a) Express f(x) in the form $2(x+a)^2 + b$. [2]

[1]

(c)	Find an expression for $f^{-1}(x)$.	[3]
------------	--------------------------------------	-----

The function g is defined by g(x) = 2x + 4 for x < -1.

(d) Find and simplify an expression for fg(x). [2]

Question 6: 9709/13/MJ/22

(a)

The function f is defined by $f(x) = 2 - \frac{3}{4x - p}$ for $x > \frac{p}{4}$, where p is a constant.

(a) Find f'(x) and hence determine whether f is an increasing function, a decreasing function or neither. [3]

(**b**) Express
$$f^{-1}(x)$$
 in the form $\frac{p}{a} - \frac{b}{cx-d}$, where *a*, *b*, *c* and *d* are integers. [4]

(c) Hence state the value of p for which $f^{-1}(x) \equiv f(x)$.

Question 8: 9709/11/ON/22

[1]

[2]

[1]

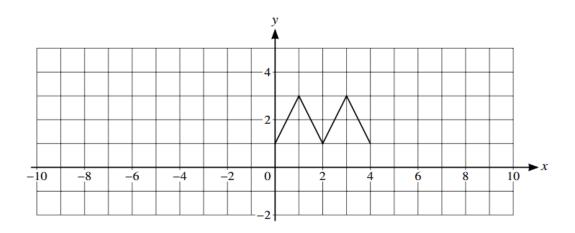
27.

Functions f and g are both defined for $x \in \mathbb{R}$ and are given by

$$f(x) = x^{2} - 4x + 9,$$

$$g(x) = 2x^{2} + 4x + 12.$$

- (a) Express f(x) in the form $(x-a)^2 + b$. [1]
- (b) Express g(x) in the form $2[(x+c)^2 + d]$.
- (c) Express g(x) in the form kf(x+h), where k and h are integers.
- (d) Describe fully the two transformations that have been combined to transform the graph of y = f(x) to the graph of y = g(x). [4]


Question 9: 9709/11/ON/22

28.

The graph with equation y = f(x) is transformed to the graph with equation y = g(x) by a stretch in the *x*-direction with factor 0.5, followed by a translation of $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

(a) The diagram below shows the graph of y = f(x).

On the diagram sketch the graph of y = g(x).

(b) Find an expression for g(x) in terms of f(x).

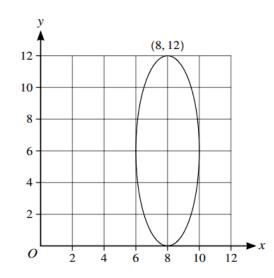
[2] Question 5: 9709/12/ON/22

[3]

Functions f and g are defined by

$$f(x) = x + \frac{1}{x} \quad \text{for } x > 0,$$

$$g(x) = ax + 1 \quad \text{for } x \in \mathbb{R},$$

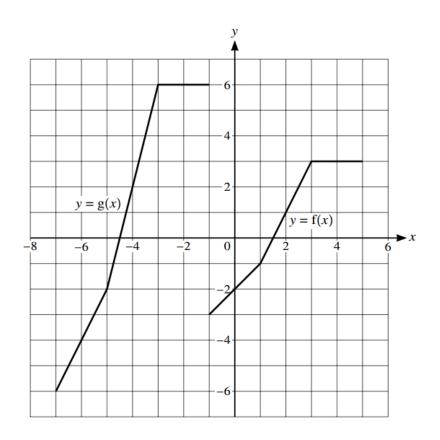

where a is a constant.

(a) Find an expression for $gf(x)$.	[1]
(b) Given that $gf(2) = 11$, find the value of <i>a</i> .	[2]
(c) Given that the graph of $y = f(x)$ has a minimum point when $x = 1$, explain whether or no an inverse.	ot f has [1]
It is given instead that $a = 5$.	
(d) Find and simplify an expression for $g^{-1}f(x)$.	[3]
(e) Explain why the composite function fg cannot be formed.	[1]
30. The function f is defined by $f(x) = -2x^2 - 8x - 13$ for $x < -3$.	2/ON/22
(a) Express $f(x)$ in the form $-2(x+a)^2 + b$, where a and b are integers.	[2]
(b) Find the range of f.	[1]

(c) Find an expression for $f^{-1}(x)$. [3]

Question 2: 9709/13/ON/22

31.


The diagram shows a curve which has a maximum point at (8, 12) and a minimum point at (8, 0). The curve is the result of applying a combination of two transformations to a circle. The first transformation applied is a translation of $\begin{pmatrix} 7 \\ -3 \end{pmatrix}$. The second transformation applied is a stretch in the y-direction.

(a) State the scale factor of the stretch.

(b) State the radius of the original circle.	[1]
(c) State the coordinates of the centre of the circle after the translation has been completed but the stretch is applied.	t before [2]
(d) State the coordinates of the centre of the original circle.	[2]
Question 5: 9709/1	1 3/0N/22
32. A function f is defined by $f(x) = x^2 - 2x + 5$ for $x \in \mathbb{R}$. A sequence of transformations is apple following order to the graph of $y = f(x)$ to give the graph of $y = g(x)$.	ied in the
Stretch parallel to the x-axis with scale factor $\frac{1}{2}$	
Reflection in the y-axis	
Stretch parallel to the y-axis with scale factor 3	
Find g(x), giving your answer in the form $ax^2 + bx + c$, where a, b and c are constants.	[4]
Question 2: 9709/1	1 3/ON/22
33.	
The function f is defined by $f(x) = -3x^2 + 2$ for $x \le -1$.	
(a) State the range of f.	[1]
(b) Find an expression for $f^{-1}(x)$.	[3]
The function g is defined by $g(x) = -x^2 - 1$ for $x \le -1$.	

(c) Solve the equation fg(x) - gf(x) + 8 = 0. [5]

Question 9: 9709/13/ON/22

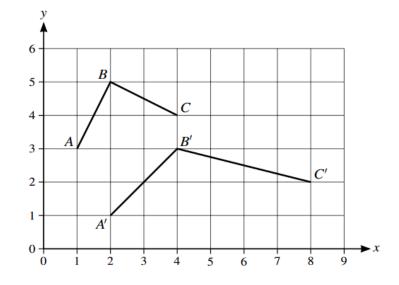
The diagram shows graphs with equations y = f(x) and y = g(x).

Describe fully a sequence of two transformations which transforms the graph of y = f(x) to y = g(x). [4]

Question 3: 9709/11/MJ/23

35.

The functions f and g are defined as follows, where a and b are constants.


$$f(x) = 1 + \frac{2a}{x-a} \text{ for } x > a$$
$$g(x) = bx - 2 \text{ for } x \in \mathbb{R}$$

(a) Given that $f(7) = \frac{5}{2}$ and gf(5) = 4, find the values of *a* and *b*. [4]

For the rest of this question, you should use the value of *a* which you found in (a).

- (b) Find the domain of f^{-1} . [1]
- (c) Find an expression for $f^{-1}(x)$.

[3] Question 8: 9709/11/MJ/23

The diagram shows the graph of y = f(x), which consists of the two straight lines AB and BC. The lines A'B' and B'C' form the graph of y = g(x), which is the result of applying a sequence of two transformations, in either order, to y = f(x).

State fully the two transformations.

[4]

[3]

[3]

[1]

Question 1: 9709/13/MJ/23

37.

The function f is defined, for $x \in \mathbb{R}$, by $f: x \mapsto x^2 + ax + b$, where a and b are constants.

(a) It is given that a = 6 and b = -8.

Find the range of f.

(b) It is given instead that a = 5 and that the roots of the equation f(x) = 0 are k and -2k, where k is a constant.

Find the values of *b* and *k*.

(c) Show that if the equation f(x + a) = a has no real roots then $a^2 < 4(b - a)$. [3]

Question 11: 9709/01/SP/20

38.

The functions f and g are defined by

$$f(x) = x^2 - 4x + 3 \text{ for } x > c, \text{ where } c \text{ is a constant,}$$
$$g(x) = \frac{1}{x+1} \text{ for } x > -1.$$

(a) Express f(x) in the form $(x-a)^2 + b$. [2]

It is given that f is a one-one function.

(b) State the smallest possible value of *c*.

It is now given that c = 5.

- (c) Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [3]
- (d) Find an expression for gf(x) and state the range of gf.

Question 9: 9709/13/MJ/20

[3]

- 39.
- (a) The graph of y = f(x) is transformed to the graph of y = 2f(x 1).

Describe fully the two single transformations which have been combined to give the resulting transformation. [3]

(b) The curve $y = \sin 2x - 5x$ is reflected in the y-axis and then stretched by scale factor $\frac{1}{3}$ in the x-direction.

Write down the equation of the transformed curve.

Question 2: 9709/12/MJ/21

40.

Functions f and g are both defined for $x \in \mathbb{R}$ and are given by

$$f(x) = x^{2} - 2x + 5,$$

$$g(x) = x^{2} + 4x + 13.$$

(a) By first expressing each of f(x) and g(x) in completed square form, express g(x) in the form f(x+p)+q, where p and q are constants. [4]

(b) Describe fully the transformation which transforms the graph of y = f(x) to the graph of y = g(x). [2]

Question 6: 9709/13/MJ/21

(a) The curve with equation $y = x^2 + 2x - 5$ is translated by $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$.

Find the equation of the translated curve, giving your answer in the form $y = ax^2 + bx + c$. [3]

(b) The curve with equation $y = x^2 + 2x - 5$ is transformed to a curve with equation $y = 4x^2 + 4x - 5$.

Describe fully the single transformation that has been applied.

Question 4: 9709/13/MJ/22

[2]

[1]

42.

41.

The function f is defined by $f(x) = 2 - \frac{5}{x+2}$ for x > -2.

- (a) State the range of f.
- (b) Obtain an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [4]

The function g is defined by g(x) = x + 3 for x > 0.

(c) Obtain an expression for fg(x) giving your answer in the form $\frac{ax+b}{cx+d}$, where a, b, c and d are integers. [3]

Question 7: 9709/13/MJ/23

[2]

MARK SCHEME

1.		_	
Answer	Marks	Partial Marks	Guidance
$f^{-1}(x) = \frac{x-2}{3}$	1	B1	
gf(x) = 4(3x+2) - 12	1	B1	
Equate $f^{-1}(x)$ and $gf(x)$ expressions, $x = \frac{2}{7}$	2	M1A1	
	4		

2.

<u>_</u> ,			
Answer	Marks	Partial Marks	Guidance
$y = (x-2)^2 + 3(x-2) + 4 = x^2 - x + 2$	2	M1A1	
Reflection [in] y axis	1	B 1	In either order
Stretch factor 3 in y direction	2	B1B1	B1 for stretch, B1 for factor 3 in y direction
	3		

Answer	Marks	Guidance
[Stretch] [factor 2, x direction (or y-axis invariant)]	*B1 DB1	
[Translation or Shift] [1 unit in y direction] or [Translation/Shift] $\begin{bmatrix} 0\\1 \end{bmatrix}$	B1B1	Accept transformations in either order. Allow (0, 1) for the vector
	4	

4.		
Answer	Marks	Guidance
$\left[2(x+3)^2\right]\left[-7\right]$	B1B1	Stating $a = 3, b = -7$ gets B1B1
	2	
$y = 2(x+3)^2 - 7 \rightarrow 2(x+3)^2 = y+7 \rightarrow (x+3)^2 = \frac{y+7}{2}$	M1	First 2 operations correct. Condone sign error or with x/y interchange
$x+3=(\pm)\sqrt{\frac{y+7}{2}} \rightarrow x=(\pm)\sqrt{\frac{y+7}{2}}-3 \rightarrow f^{-1}(x)=-\sqrt{\frac{x+7}{2}}-3$	A1FT	FT on <i>their a</i> and <i>b</i> . Allow $y = \dots$
Domain: $x \ge -5$ or ≥ -5 or $[-5, \infty)$	B1	Do not accept $y =, f(x) =, f^{-1}(x) =$
	3	
$fg(x) = 8x^2 - 7$	B1FT	SOI. FT on <i>their</i> –7 from part (a)
$8x^2 - 7 = 193 \rightarrow x^2 = 25 \rightarrow x = -5$ only	B1	
Alternative method for question 9(c)		
$g(x) = f^{-1}(193) \rightarrow 2x - 3 = -\sqrt{100} - 3$	M1	FT on their $f^{-1}(x)$
x = -5 only	A1	
	2	
(Largest k is) $-\frac{1}{2}$	B1	Accept $-\frac{1}{2}$ or $k \leq -\frac{1}{2}$
	1	

Answer	Marks
$3(3x+b)+b=9x+4b \rightarrow 10=18+4b$	M1
<i>b</i> = -2	A1
Either $f(14) = 2$ or $f^{-1}(x) = 2(x + a)$ etc.	M1
<i>a</i> = 5	A1
	4
$gf(x) = 3\left(\frac{1}{2}x - 5\right) - 2$	M1
$gf(x) = \frac{3}{2}x - 17$	A1
	2
6.	
Answer	Marke

Answer	Marks
$\mathrm{ff}(x) = a - 2(a - 2x)$	M1
$\mathrm{ff}(x) = 4x - a$	A1
$f^{-1}(x) = \frac{a-x}{2}$	M1 A1
	4
$4x - a = \frac{a - x}{2} \to 9x = 3a$	M1
$x = \frac{a}{3}$	A1
	2
7.	

	Answer	Marks
(y) = f(-x)		B1
		1
(y) = 2f(x)		B1
		1
(y) = f(x+4) - 3		B1 B1
		2

Answer	Marks	Guidance
$fg(x) = (2x+1)^2 + 3$	B1	OE
	1	
$y = (2x+1)^2 + 3 \rightarrow 2x + 1 = (\pm)\sqrt{y-3}$	M1	1st two operations. Allow one sign error or x/y interchanged
$x = (\pm)\frac{1}{2}(\sqrt{y-3} - 1)$	M1	OE 2nd two operations. Allow one sign error or x/y interchanged
$(fg^{-1}(x) =) \frac{1}{2}(\sqrt{x-3} -1)$ for $(x) > 3$	A1 B1	Allow (3, ∞)
	4	
$gf(x) = 2(x^2 + 3) + 1$	B1	SOI
$(2x+1)^2 + 3 - 3 = 2(x^2 + 3) + 1 \rightarrow 2x^2 + 4x - 6 (= 0)$	*M1	Express as 3-term quadratic
(2)(x+3)(x-1) (=0)	DM1	Or quadratic formula or completing the square
<i>x</i> = 1	A1	
	4	

Answer	Marks	Guidance
0	B1	
	1	
$(f^{-1}(x)) = \frac{x+2}{4}, (g^{-1}(x)) = \frac{4-x}{x} \text{ or } \frac{4}{x} - 1$	B1 B1	OE. Sight of correct inverses.
$x^2 + 6x - 16 \ (= 0)$	B1	Equating inverses and simplifying.
(x+8) and $(x-2)$	M1	Correct attempt at solution of <i>their</i> 3-term quadratic-factorising, completing the square or use of formula.
(x =) 2 or -8	A1	Do not accept answers obtained with no method shown.
	5	

10.

Answer	Marks	Guidance
$y = \frac{2x}{3x-1} \rightarrow 3xy - y = 2x \rightarrow 3xy - 2x = y \text{ (or } -y = 2x - 3xy)$	*M1	For 1st two operations. Condone a sign error
$x(3y-2) = y \rightarrow x = \frac{y}{3y-2}$ (or $x = \frac{-y}{2-3y}$)	DM1	For 2nd two operations. Condone a sign error
$\left(\mathbf{f}^{-1}(x)\right) = \frac{x}{3x-2}$	A1	Allow $(f^{-1}(x)) = \frac{-x}{2-3x}$
	3	
$\left[\frac{2(3x-1)+2}{3(3x-1)}\right] = \left[\frac{6x}{3(3x-1)} = \frac{2x}{3x-1}\right]$	B1 B1	AG, WWW First B1 is for a correct single unsimplified fraction. An intermediate step needs to be shown. Equivalent methods accepted.
	2	
Answer	Marks	Guidance
$(\mathbf{f}(\mathbf{x})) > \frac{2}{3}$	B1	Allow $(y) > \frac{2}{3}$. Do not allow $x > \frac{2}{3}$
	1	

Answer	Marks	Guidance
(Stretch) (factor 3 in y direction or parallel to the y-axis)	B1 B1	
(Translation) $\begin{pmatrix} 4\\ 0 \end{pmatrix}$	B1 B1	Allow Translation 4 (units) in <i>x</i> direction. N.B. Transformations can be given in either order.
	4	
[y=] 3f(x-4)	B1 B1	B1 for 3, B1 for $(x - 4)$ with no extra terms.
	2	

12.

Answer	Marks	Guidance
$\left[f(x)=\right](x+1)^2+2$	B1 B1	Accept $a = 1, b = 2$.
Range [of f is (y)] ≥ 2	B1FT	OE. Do not allow $x \ge 2$, FT on <i>their b</i> .
	3	
$y = (x+1)^2 + 2$ leading to $x = [\pm]\sqrt{y-2} - 1$	M1	Or by using the formula. Allow one sign error.
$f^{-1}(x) = -\sqrt{x-2} - 1$	A1	
	2	
Answer	Marks	Guidance
$2(x^2 + 2x + 3) + 1 = 13$	B1	Or using a correct completed square form of $f(x)$
$2x^{2}+4x-6[=0]$ leading to $(2)(x-1)(x+3)[=0]$	B1	Or $x = 1, x = -3$ using formula or completing square. Must reach 2 solutions.
x = -3 only	B1	
	3	

Answer	Marks	Guidance
Range of f is $f(x) \ge -4$	B1	Allow <i>y</i> , f or 'range' or $[-4,\infty)$
	1	
$y = (x-2)^2 - 4 \Rightarrow (x-2)^2 = y + 4 \Rightarrow x - 2 = +\sqrt{(y+4)} \text{ or } \pm\sqrt{(y+4)}$	M1	May swap variables here
$\left[f^{-1}(x)\right] = \sqrt{(x+4)} + 2$	A1	
	2	
$(x-2)^2 - 4 = -\frac{5}{3}x + 2 \Rightarrow x^2 - 4x + 4 - 4 = -\frac{5}{3}x + 2 [\Rightarrow x^2 - \frac{7}{3}x - 2 = 0]$	M1	Equating and simplifying to a 3-term quadratic
$(3x+2)(x-3)[=0]$ or $\frac{7\pm\sqrt{7^2-4(3)(-6)}}{6}$ OE	M1	Solving quadratic
x = 3 only	A1	
	3	

Answer	Marks	Guidance
$f^{1}(12) = 6$	M1	Substitute 12 into <i>their</i> $f^{-1}(x)$ and evaluate
$g(f^{-1}(12)) = 6a + 2$	M1	Substitute <i>their</i> '6' into $g(x)$
$g(g(f^{-1}(12))) = a(6a+2) + 2 = 62$	M1	Substitute the result into $g(x)$ and $= 62$
$6a^2 + 2a - 60 = 0$	M1	Forming and solving a 3-term quadratic
$a = -\frac{10}{3} \text{ or } 3$	A1	
Alternative method for Question 9(d)		
$g(f^{-1}(x)) = a(\sqrt{x+4}+2)+2 \text{ or } gg(x) = a(ax+2)+2$	M1	Substitute <i>their</i> $f^{1}(x)$ or $g(x)$ into $g(x)$
$g(g(f^{-1}(x))) = a(a(\sqrt{x+4}+2)+2)+2$	M1	Substitute the result into $g(x)$
$g(g(f^{-1}(12))) = a(6a+2) + 2 = 62$	M1	Substitute 12 and = 62
$6a^2 + 2a - 60 = 0$	M1	Forming and solving a 3-term quadratic
$a = -\frac{10}{3} \text{ or } 3$	A1	
	5	

Answer	Marks	Guidance
$ff(x) = 2(2x^2 + 3)^2 + 3$	M1	Condone = 0.
$8x^4 + 24x^2 + 21$	Al	ISW if correct answer seen. Condone = 0.
	2	
$8x^4 + 24x^2 + 21 = 34x^2 + 19 \Rightarrow 8x^4 + 24x^2 - 34x^2 + 21 - 19 = 0$	M1	Equating $34x^3 + 19$ to <i>their</i> 3-term $ff(x)$ and collect all terms on one side condone \pm sign errors.
$8x^4 - 10x^2 + 2[=0]$	Al	
$[2](x^2 - 1)(4x^2 - 1)$	M1	Attempt to solve 3-term quartic or 3-term quadratic by factorisation, formula or completing the square or factor theorem.
$\left[x^2 = 1 \text{ or } \frac{1}{4} \text{ leading to}\right]x = 1 \text{ or } x = \frac{1}{2}$	Al	If factorising, factors must expand to give $8x^4$ or $4x^4$ 4 or <i>their</i> ax^4 otherwise M0A0 due to calculator use. Condone ± 1 , $\pm \frac{1}{2}$ but not $\sqrt{\frac{1}{4}}$ or $\sqrt{1}$.
	4	

Answer	Marks	Guidance
$[fg(x) =]1/(2x+1)^2 - 1$	B1	SOI
$\frac{1}{(2x+1)^2 - 1} = 3 \text{ leading to } 4(2x+1)^2 = 1$ or $\frac{1}{(2x+1)} = [\pm]2 \text{ or } 16x^2 + 16x + 3 = 0$	M1	Setting fg(x)=3 and reaching a stage before $2x+1=\pm\frac{1}{2}$ or reaching a 3 term quadratic in x
$2x+1=\pm\frac{1}{2}$ or $2x+1=-\frac{1}{2}$ or $(4x+1)(4x+3)[=0]$	A1	Or formula or completing square on quadratic
$x = -\frac{3}{4}$ only	A1	
Alternative method for Question 8(a)		
$x^2 - 1 = 3$	M1	
g(x) = -2	A1	
$\frac{1}{(2x+1)} = -2$	M1	
$x = -\frac{3}{4}$ only	A1	
	4	
Answer	Marks	Guidance
$y = \frac{1}{(2x+1)^2} - 1$ leading to $(2x+1)^2 = \frac{1}{y+1}$ leading to $2x+1 = [\pm]\frac{1}{\sqrt{y+1}}$	*M1	Obtain $2x+1$ or $2y+1$ as the subject
$x = [\pm] \frac{1}{2\sqrt{y+1}} - \frac{1}{2}$	DM1	Make $x($ or $y)$ the subject
$-\frac{1}{2\sqrt{x+1}} - \frac{1}{2}$	A1	OE e.g. $-\frac{\sqrt{x+1}}{2x+2} - \frac{1}{2}, -\left(\sqrt{\frac{-x}{4x+4} + \frac{1}{4}} + \frac{1}{2}\right)$
	3	

Answer	Marks	Guidance
$\left\{-3(x-2)^2\right\}$ {+14}	B1 B1	B1 for each correct term; condone $a = 2, b = 14$.
	2	
[<i>k</i> =] 2	B1	Allow $[x] \leq 2$.
	1	

Answer	Marks	Guidance
[Range is] $[y] \leq -13$	B 1	Allow $[f(x)] \leq -13$, $[f] \leq -13$ but NOT $x \leq -13$.
	1	
$y = -3(x-2)^{2} + 14$ leading to $(x-2)^{2} = \frac{14-y}{3}$	M1	Allow $\frac{y-14}{-3}$. Allow 1 error in rearrangement if x, y on opposite sides.
$x = 2(\pm)\sqrt{\frac{14-y}{3}}$	A1	Allow $\frac{y-14}{-3}$.
$[f^{-1}(x)] = 2 - \sqrt{\frac{14 - x}{3}}$	A1	OE. Allow $\frac{x-14}{-3}$. Must be x on RHS; must be negative
		square root <u>only.</u>
Alternative method for question 8(d)		
$x = -3(y-2)^{2} + 14$ leading to $(y-2)^{2} = \frac{14-x}{3}$	M1	Allow $\frac{x-14}{-3}$. Allow 1 error in rearrangement if x, y on opposite sides.
$=2(\pm)\sqrt{\frac{14-x}{3}}$	A1	Allow $\frac{x-14}{-3}$.
$[f^{-1}(x)] = 2 - \sqrt{\frac{14 - x}{3}}$	A1	OE. Allow $\frac{x-14}{-3}$. Must be x on RHS; must be negative square root <u>only.</u>
	3	
Answer	Marks	Guidance
$[g(x) =] \left\{ -3(x+3-2)^2 \right\} + \{14+1\}$	B2, 1, 0	OR $\left\{-3(x+3)^{2}\right\}+\left\{12(x+3)\right\}+\left\{3\right\}$
$g(x) = -3x^2 - 6x + 12$	B1	
	3	

Answer	Marks	Guidance
Stretch with [scale factor] either ± 2 or $\pm \frac{1}{2}$	B1	
Scale factor $\frac{1}{2}$ in the <i>x</i> -direction	B1	
Translation $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ or translation of 3 units in negative <i>y</i> -direction	B1	
	3	
(10,9)	B1 B1	B1 for each correct co-ordinate.
	2	

1	Q	
-	.Ο	•

Answer	Marks	Guidance
f(5)=[2] and f(<i>their</i> 2)=[5] OR ff(5)= $\left[\frac{2+3}{2-1}\right]$ OR $\frac{\frac{x+3}{x-1}+3}{\frac{x+3}{x-1}-1}$ and an attempt to substitute x =5.	MI	Clear evidence of applying f twice with $x = 5$.
5	A1	
	2	

Answer	Marks	Guidance
$\frac{x+3}{x-1} = y \Longrightarrow x+3 = xy-y \text{ OR } \frac{y+3}{y-1} = x \Longrightarrow y+3 = xy-x$	*M1	Setting $f(x) = y$ or swapping x and y, clearing of fractions and expanding brackets. Allow \pm sign errors.
$xy - x = y + 3 \Rightarrow x = \frac{y+3}{y-1}$ OE OR $y+3 = xy - x \Rightarrow y = \left[\frac{x+3}{x-1}\right]$ OE	DM1	Finding x or $y =$. Allow \pm sign errors.
$[f^{-1}(x) \text{ or } y] = \frac{x+3}{x-1}$	A1	OE e.g. $1 + \frac{4}{x-1}$ etc. Must be a function of x, cannot be $x = .$
	3	
10		

Answer	Marks	Guidance	
{Reflection} {[in the] x-axis} or {Stretch of scale factor -1} {parallel to y-axis}	*B1 DB1	{} indicate how the B1 marks should be awarded throughout.	
Then {Translation} $\left\{ \begin{pmatrix} 0\\3 \end{pmatrix} \right\}$	B1 B1	Or Translation 3 units in the positive <i>y</i> -direction. N.B. If order reversed a maximum of 3 out of 4 marks awarded.	
Alternative method for question 1			
{Translation} $\left\{ \begin{pmatrix} 0\\ -3 \end{pmatrix} \right\}$	B1 B1	Or Translation 3 units in the negative <i>y</i> -direction.	
Then {Reflection} {in the x-axis} or {Stretch of scale factor -1} {parallel to y-axis}	*B1 DB1	N.B. If order reversed a maximum of 3 out of 4 marks awarded.	
	4		

20.		
Answer	Marks	Guidance
$y = t^{-1}(x)$	B1	A reflection of the given curve in $y = x$ (the line $y = x$ can be implied by position of curve).
	1	

Answer	Marks	Guidance
$y = \frac{-x}{\sqrt{4-x^2}}$ leading to $x^2 = y^2 (4-x^2)$	*M1	Squaring and clearing the fraction. Condone one error in squaring $-x$ or y
$x^2\left(1+y^2\right) = 4y^2$	DM1	OE. Factorisation of the new subject with order of operations correct. Condone sign errors.
$x = (\pm) \frac{2y}{\sqrt{1 + y^2}}$	DM1	$x = (\pm) \sqrt{\left(\frac{4y^2}{(1+y^2)}\right)}$ OE is acceptable for this mark. Isolating the new subject. Order of operations correct.
		Condone sign errors.
$f^{-1}(x) = \frac{-2x}{\sqrt{1+x^2}}$	A1	Selecting the correct square root. Must not have fractions in numerator or denominator.
	4	
1 or $a = 1$	B1	Do not allow $x = 1$ or $-1 < x < 1$
	1	
$[fg(x) = f(2x) =]\frac{-2x}{\sqrt{4 - 4x^2}}$	B1	Allow $\frac{-2x}{\sqrt{4-(2x)^2}}$ or any correct unsimplified form.
$fg(x) = \frac{-x}{\sqrt{1-x^2}}$ or $\frac{-x}{1-x^2}\sqrt{1-x^2}$ or $\frac{x}{x^2-1}\sqrt{1-x^2}$	B1	Result of cancelling 2 in numerator and denominator.
	2	

21.		
Answer	Marks	Guidance
$2[{(x-2)^2} {+3}]$	B1 B1	B1 for $a = 2$, B1 for $b = 3$. 2 $(x-2)^2$ +6 gains B1B0
	2	
{Translation} $\binom{\{2\}}{\{3\}}$ OR {Stretch} {y direction} {factor 2}	B2,1,0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
{Stretch} {y direction} {factor 2} OR {Translation} $\binom{2}{6}$	B2,1,0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
	4	

	Marks	Guidance
$= \left] \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3} \right]$	M1 A1	OE. Answer must come from formula or completing square. If M0A0 scored then SC B1 for $2\pm\sqrt{3}$ only.
$\left(2\pm\sqrt{3}\right)^2$	M1	Attempt to square <i>their</i> $2 \pm \sqrt{3}$
$\sqrt{3}$, 7 – 4 $\sqrt{3}$	A1	Accept $7 \pm 4\sqrt{3}$ or $a = 7, b = \pm 4, c = 3$ SC B1 instead of second M1A1 for correct final answer only.
rnative method for question 9(a)		
$\frac{1}{2} + 1 = 0$ leading to $(x+1)^2 = 16x$ leading to $x^2 - 14x + 1 = 0$	*M1 A1	OE
$\frac{14\pm\sqrt{196-4}}{2}$	DM1	Attempt to solve for <i>x</i>
$\sqrt{3}$, 7-4 $\sqrt{3}$	A1	SC B1 instead of second M1A1 for correct final answer only.
	4	
$(x) = m \left(x^{\frac{1}{2}} - 2 \right)^2 + n$	M1	SOI
$[x] =] m \left(x - 4x^{\frac{1}{2}} + 4 \right) + n \equiv x - 4x^{\frac{1}{2}} + 1$	A1	SOI
1, <i>n</i> = -3	A1 A1	WWW
	4	

Answer	Marks	Guidance
$y = \frac{x^2 - 4}{x^2 + 4}$ leading to $(x^2 + 4)y = (x^2 - 4)$ leading to $x^2y + 4y = x^2 - 4$	*M1	For clearing denominator and expanding brackets. If swap variables first, look for $y^2x + 4x = y^2 - 4$.
$x^{2}y - x^{2} = -4y - 4$ leading to $x^{2}(1-y) = 4y + 4$ leading to $x^{2} =$	DM1	For making x^2 the subject. If swap variables first, look for $y^2(1-x)=4x+4 \Rightarrow y^2=$
$x^{2} = \frac{4y+4}{1-y}$ leading to $x = \sqrt{\frac{4y+4}{1-y}}$ leading to $[f^{-1}(x)] = \sqrt{\frac{4x+4}{1-x}}$	A1	OE e.g. $\sqrt{\frac{-4x-4}{x-1}}$ without \pm in final answer.
Alternative method for Q6(a)		
$x = \frac{y^2 - 4}{y^2 + 4}$ leading to $x = 1 - \frac{8}{y^2 + 4}$ leading to $x - 1 = \frac{-8}{y^2 + 4}$	*M1	For division and reaching $x - 1 =$ (or $y - 1 =$)
$y^{2} + 4 = \frac{-8}{x-1}$ leading to $y^{2} = \frac{-8}{x-1} - 4$	DM1	For making $y^2(\text{ or } x^2)$ the subject.
$[y=]\left[f^{-1}(x)\right] = \sqrt{\frac{-8}{x-1}-4}$	A1	OE without \pm in final answer.
	3	

Answer	Marks	Guidance
$1 - \frac{8}{x^2 + 4} = \frac{x^2 + 4}{x^2 + 4} - \frac{8}{x^2 + 4} \left[= \frac{x^2 + 4 - 8}{x^2 + 4} \right] = \frac{x^2 - 4}{x^2 + 4}$	M1 A1	Using common denominator or division to reach 1. Remainder –8. WWW
0 < f(x) < 1	B1 B1	B1 for each correct inequality. B0 if contradictory statement seen. Accept $f(x) > 0$, $f(x) < 1$; $1 > f(x) > 0$; $(0, 1)$ SC B1 for $0 \le f(x) \le 1$.
Because the range of f does not include the whole of the domain of f (or any of it)	B1	Accept an answer that includes an example outside the domain of f, e.g. $f(4) = \frac{12}{20}$. Must refer to the domain or > 2. Need not explicitly use the term 'domain' but must not refer just to the range.
	1	

		1	
24.			
Answer	Mark		Guidance
$x \neq 1$ or $x < 1$, $x > 1$ or $(-\infty, 1), (1, \infty)$	$x \in \mathbb{R}$ B	Must be x n	ot $f^{-1}(x)$ or y. Do not accept $1 < x < 1$.
$y = \frac{2x+1}{2x-1}$ leading to $(2x-1)y = 2x+1$ leading	to $2xy - y = 2x + 1$ *M	Setting $y = , x$	removing fraction and expanding brackets.
2xy - 2x = y + 1 leading to $2x(y - 1) = y + 1$	DM	Reorganising	to get $x =$. Condone \pm sign errors only.
leading to $x = \frac{y+1}{2(y-1)}$			
$[f^{-1}(x)] = \frac{x+1}{2(x-1)}, \frac{x+1}{x-1} \times \frac{1}{2} \text{ or } \frac{1}{x-1} + \frac{1}{2}$	А	OE. Must be	in terms of x. Do not allow $\frac{x+1}{x-1} \div 2$.
		;	
(<i>their</i> $f^{-1}(3)$) leading to (<i>their</i> $f^{-1}(3)$) ² + 4 [.	$f^{-1}(3) = 1, 1+4 =]$ M	Correct order	of operations and substitution of $x = 3$ needed.
5	А	1	
		2	
Sight of 'not one to one' or 'many to one' or 'one	to many' B	gives 2 value	nentioning 2 values, or + and —, such as: square root s or horizontal line test crosses curve twice or suse of turning point or 2 values because it is a
		l	
Answer	Mark	4	Guidance
$f(x) = 1 + \frac{2}{2x - 1} = \frac{2x - 1}{2x - 1} + \frac{2}{2x - 1} = \frac{2x + 1}{2x - 1}$	В		ne equating expressions and verification.
$f'(x) = -4(2x-1)^{-2}$	*M	For $k(2x-1)$	$^{-2}$ and no other terms or correct use of the product or
or $2(2x-1)^{-1} + \{-(2x+1)2(2x-1)^{-2}\}$ or $(2x-1)^{-2}$	$\frac{1)2 - 2(2x+1)}{(2x-1)^2}$	quotient rule	then ISW.
Gradient $m = -4$	А	Differentiatio	n must have clearly taken place.
Equation of tangent is $y-3 = -4(x-1)$ [$\Rightarrow y =$	-4x+7] DM	Using (1, 3) i	n the equation of a line with <i>their</i> gradient.
Crosses axes at $\left(\frac{7}{4}, 0\right)$ and $\left(0, 7\right)$	A1 F	SOI from <i>the</i>	<i>ir</i> straight line or by integration from 0 to ' <i>their</i> 7/4'.
$[Area =] \frac{49}{8}$	Α	0	AWRT. 10, SC B2 available for correct answer.

25.		
Answer	Marks	Guidance
$\left\{2(x-4)^2\right\}$ {-9}	B1 B1	OE When <i>a</i> and <i>b</i> stated give priority to marking algebraic expression.
	2	
<i>y</i> > -7	B1	Allow $f(x) > -7$ or $(-7, \infty)$ Don't allow $x > -7$.
	1	
$\left(x-4\right)^2 = \frac{y+9}{2}$	M1	2 operations correct. Allow a sign error.
$x = 4 \left[\pm\right] \sqrt{\frac{y+9}{2}}$	M1	2 operations correct. Allow a sign error.
$[f^{-1}(x)]=4-\sqrt{\frac{x+9}{2}}$	A1 FT	OE FT on <i>their</i> answer to (a) i.e. $-a - \sqrt{\left(\frac{x-b}{2}\right)}$.
	3	
$fg(x) = f(2x + 4) = 2(2x + 4 - 4)^2 - 9$	M1	Allow $2(2x+4)^2 - 16(2x+4) + 23$.
$8x^2 - 9$ only	A1	
	2	

Answer	Marks	Guidance
$f'(x) = -3(-1)(4)(4x-p)^{-2} \left[= \frac{12}{(4x-p)^2} \right]$	B2, 1, 0	
> 0 Hence increasing function	B1FT	Correct conclusion from <i>their</i> $f'(x)$.
	3	
$y=2-\frac{3}{4x-p} \Rightarrow (y-2)(4x-p)=-3$ or $4xy-py=8x-2p-3$	M1	OE Form horizontal equation. Sign errors only, no missing terms.
		May go directly to $4y = p - \frac{3}{x-2}$ OE M1 M1
$4xy - 8x = py - 2p - 3 \Longrightarrow 4x(y - 2) = p(y - 2) - 3 \text{ or } 4x = -\frac{3}{x - 2} + p$	M1	OE Factorise out $[4]x$ or $[4]y$.
$x = \frac{p(y-2)-3}{4(y-2)} \left[\Rightarrow x = \frac{p}{4} - \frac{3}{4y-8} \right] \text{ or } \frac{-\frac{3}{x-2} + p}{4}$	M1	OE Make x (or y) the subject.
$\left[\mathbf{f}^{-1}(x)=\right]\frac{p}{4}-\frac{3}{4x-8}$	A1	OE in correct form (must be in terms of x).
	4	
[<i>p</i> =]8	B1	
	1	
27.		

Answer	Marks	Guidance
$\left(x-2\right)^2+5$	B1	
	1	
$2\left(\left\{\left(x+1\right)^2\right\}+\left\{5\right\}\right)$	B2, 1, 0	
	2	
[g(x)=] 2f(x+3) or k=2, h=3	B1	In correct form. B0 if contradiction.
	1	
{Translation} $\left\{ \begin{pmatrix} -3\\ 0 \end{pmatrix} \right\}$	B2, 1, 0 FT	FT on their $x+3$ or $h=3$.
{Stretch} {y direction, factor 2}	B2, 1, 0 FT	FT on <i>their</i> 2 or $k = 2$.
	4	

Answer	Marks	Guidance
Three points at the bottom of their transformed graph plotted at $y = 2$	B1	All 5 points of the graph must be connected.
Bottom three points of //\ at $x = 0$, $x = 1$ & $x = 2$	B1	Must be this shape.
All correct	B1	Condone extra cycles outside $0 \leq x \leq 2$.
	3	SC: If B0 B0 scored, B1 available for \land in one of correct positions or all 5 points correctly plotted and not connected or correctly sized shape in the wrong position.
[g(x) =] f(2x) + 1	B1 B1	Award marks for their final answer as follows: f(2x) B1, +1 B1. Condone $y = or f(x) = .$
	2	

Answer	Marks	Guidance
$a\left(x+\frac{1}{x}\right)+1$	B1	ISW
	1	

Answer	Marks	Guidance
$a\left(2+\frac{1}{2}\right)+1=11$	M1	Substitute $x = 2$ into <i>their</i> expression from (a) and equate to 11. This may be done in 2 stages: $f(2)=2.5, g(2.5)=11$.
[<i>a</i> =] 4	A1	
	2	
No,[because it is] not one-one	B1	Or other suitable explanation that may include one to many or many to one.
	1	
$[g^{-1}(x)] = \frac{x-1}{5}$ WWW	B1	Condone use of a instead of 5.
$[g^{-1}f(x)=]\frac{x+\frac{1}{x}-1}{5}$ OE	M1	Correct combination of their $g^{-1}(x)$ with given $f(x)$ Condone use of <i>a</i> instead of 5.
$\frac{x^2 - x + 1}{5x}$ or $\frac{1}{5}\left(x + \frac{1}{x} - 1\right)$ or $\frac{1}{5}\left(x + x^{-1} - 1\right)$ OE ISW	A1	Must not contain unresolved fractions e.g. $\frac{x + x^{-1} - 1}{5}$.
	3	
The domain of f does not include the whole of the range of g. Or The range of g does not lie in the domain of f.	B1	Accept an answer that includes an example outside the domain of f, e.g. $g(-1) = -4$ but for f, $x > 0$.
	1	

Answer	Marks	Guidance
$[f(x)] = \{-2(x+2)^2\} - \{5\}$	B1 B1	
	2	
$\left[\mathbf{f}(x)\right] < -7$	B1	Allow $y < -7$, $(-\infty, -7)$ or less than -7 $-\infty \langle f(x) \langle -7, -7 \rangle f(x) \rangle - \infty$, $f < -7$
	1	
$y = -2(x+2)^2 - 5 \rightarrow (x+2)^2 = \frac{-(y+5)}{2}$	M1	Operations correct. Allow sign errors. FT <i>their</i> quadratic from (a) .
$x = [\pm] \sqrt{\frac{-(y+5)}{2}} -2$	M1	Operations correct. Allow sign errors. FT <i>their</i> quadratic from (a).
$[f^{-1}(x)] = -2 - \sqrt{\frac{-(x+5)}{2}}$ or $-2 - \sqrt{-\frac{(x+5)}{2}}$	A1	Allow $[f^{-1}(x)] = -2 - \sqrt{\frac{x+5}{-2}}$.
	3	

Answer	Marks	Guidance
3	B1	Ignore any description.
	1	
2	B1	Ignore any description.
	1	
(8, 2)	B1 B1	Ignore any description. Allow vector notation and absence of brackets.
	2	

Answer	Marks	Guidance
(1,5)	B1 FT	FT each coordinate, (<i>their</i> 8 – 7, <i>their</i> 2 + 3) Allow
	B1 FT	vector notation and absence of brackets.
	2	
32.		

Answer	Marks	Guidance
Stretch: $(2x)^2 - 2(2x) + 5$ or $(x-1)^2 + 4$ leading to $(2x-1)^2 + 4$	M1	Replacing x by $2x$.
Reflection: $(-2x)^2 - 2(-2x) + 5$ or $(-2x-1)^2 + 4$	M1	Replacing x by $-x$. FT on <i>their</i> stretch.
Stretch: $3\{(-2x)^2 - 2(-2x) + 5\}$ or $3\{(-2x-1)^2 + 4\}$	M1	Multiplying the whole function by 3. FT on <i>their</i> (stretch plus reflection).
$12x^2 + 12x + 15$	A1	
	4	

Answer	Marks	Guidance
$[y] \leqslant -1$	B1	Accept f or $f(x) \leq -1$, $-\infty < y \leq -1$, $(-\infty, -1]$. Do not accept $x \leq -1$.
	1	
$y = -3x^2 + 2$ rearranged to $3x^2 = 2 - y$, leading to $x^2 = \frac{2 - y}{3}$ or $y^2 = \frac{2 - x}{3}$	M1	
$x = \left[\pm\right] \sqrt{\frac{2-y}{3}} \rightarrow \left[\mathbf{f}^{-1}(x)\right] = \left\{-\right\} \left\{\sqrt{\frac{2-x}{3}}\right\}$	A1 A1	A1 for minus, A1 for $\sqrt{\frac{2-x}{3}}$, allow $-\sqrt{\frac{x-2}{-3}}$.
	3	
$fg(x) = -3(-x^2 - 1)^2 + 2$	M1	SOI expect $-3x^4 - 6x^2 - 1$.
$gf(x) = -(-3x^2 + 2)^2 - 1$	M1	SOI expect $-9x^4 + 12x^2 - 5$.
$fg(x) - gf(x) + 8 = 0$ leading to $6x^4 - 18x^2 + 12$ [=0]	A1	OE
$[6](x^2-1)(x^2-2) = 0$ or formula or completion of the square	M1	Solving a 3-term quadratic equation in x^2 must be seen.
$x = -1$, $-\sqrt{2}$ only these two solutions	A1	Allow $-\sqrt{1}$, $-1.41[4]$ Answers only SC B1.
	5	

34.

Answer	Marks	Guidance
{Stretch} {factor 2} {in y-direction}	B2, 1, 0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
$\{\text{Translation}\} \begin{pmatrix} \{-6\}\\ \{0\} \end{pmatrix}$	B2, 1, 0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
	4	Transformations may be in either order.

Answer	Marks	Guidance
$1 + \frac{2a}{7-a} = \frac{5}{2} \Biggl[\Rightarrow \frac{2a}{7-a} = \frac{3}{2} \Rightarrow 7a = 21 \Biggr] \Rightarrow a = \dots$	M1	OE Substitute $x = 7$ then solve for <i>a</i> via legitimate mathematical steps. Condone sign errors only.
OR $1 + \frac{2a}{7-a} = \frac{5}{2} \left[\Rightarrow (7-a) + 2a = \frac{5}{2}(7-a) \left[\Rightarrow 7a = 21 \right] \Rightarrow a = \dots \right]$		
<i>a</i> = 3	A1	If M0, SC B1 for $a = 3$ with no working.
$f(5) = 1 + \frac{2(their3)}{5 - their3} = 4 [\Rightarrow 4b - 2 = 4] \Rightarrow b = \dots$ OR gf(5) = $b \left(1 + \frac{2(their3)}{5 - their3} \right) - 2 [\Rightarrow 4b - 2 = 4] \Rightarrow b = \dots$	М1	Evaluate $f(5)$, either separately or within gf then solve for <i>b</i> via legitimate mathematical steps. Condone sign errors only. FT <i>their a</i> value.
$b = \frac{3}{2}$	A1	OE e.g. $\frac{6}{4}$, 1.5.
	4	
<i>x</i> > 1	B1	Accept $(1,\infty)$ or $\{*: *> 1\}$ where * is any variable. B0 for $f^{-1}(x) > 1$ or $f(x) > 1$ or $y > 1$.
	1	
Answer	Marks	Guidance
EITHER $x-1=\frac{6}{y-3}$ [\Rightarrow (y-3)(x-1)=6]	*M1	OE $y-1 = \frac{6}{x-3} \Rightarrow (x-3)(y-1) = 6.$
OR $x=1+\frac{6}{y-3} \Rightarrow x(y-3)=(y-3)+6$		OE $y=1+\frac{6}{x-3} \Rightarrow y(x-3)=(x-3)+6$. Allow *M1 for use of <i>their</i> 3 from (a).
$y-3 = \frac{6}{x-1}$ or $y(x-1) = 3x+3$	DM1	OE $x-3 = \frac{6}{y-1}$ or $x(y-1) = 3y+3$. Allow DM1 for use of <i>their</i> 3 from (a).
$\left[f^{-1}(x)\right] = 3 + \frac{6}{x-1}$	A1	OE Correct answer e.g. $\frac{3x+3}{x-1}$ ISW. Must be in terms of x.
		*M1 DM1 possible for ' a ' used, but A0 so max 2/3.
	3	

Answer	Marks	Guidance
$\{\text{Translation}\} \begin{pmatrix} \{0\}\\ \{-2\} \end{pmatrix}$	B2, 1, 0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
{Stretch} {[scale] factor 2} {parallel to x-axis}	B2, 1, 0	B2 for fully correct, B1 with two elements correct.
	4	Transformations can be in either order.

2	7	
5	/	•

a)	$x^{2} + 6x - 8 = (x + 3)^{2} - 17$	2	B1B1	B1 for $(x + 3)^2$, B1 for -17
9	OR	-	DIDI	OR
	$2x + 6 = 0 \rightarrow x = -3 \rightarrow y = -17$			B1 for $x = -3$, B1 for $y = -17$
	Range $f(x) \ge -17$	1	B1FT	FT; following through visible method
		3		
)	$(x-k)(x+2k) = 0 \equiv x^2 + 5x + b = 0$	1	M1	Realises the link between roots and the equation
	<i>k</i> = 5	1	A1	Comparing coefficients of x
	$b = -2k^2 = -50$	1	A1	
		3		
)	$(x+a)^2 + a(x+a) + b = a$	1	M1*	Replaces 'x' by ' $x + a$ ' in 2 terms
	Uses $b^2 - 4ac$, $9a^2 - 4(2a^2 + b - a)$	1	DM1	Any use of discriminant
	$a^2 < 4(b-a)$	1	A1	AG
		3		

38.		
(a)	$\left[\left(x-2\right)^2\right]\left[-1\right]$	B1 B1
		2
(b)	Smallest $c = 2$ (FT on <i>their</i> part (a))	B1FT
		1
(c)	$y = (x-2)^2 - 1 \rightarrow (x-2)^2 = y + 1$	*M1
	$x = 2(\pm)\sqrt{y+1}$	DM1
	$(f^{-1}(x)) = 2 + \sqrt{x+1}$ for $x > 8$	A1
		3
(d)	$gf(x) = \frac{1}{(x-2)^2 - 1 + 1} = \frac{1}{(x-2)^2} OE$	B1
	Range of gf is $0 < gf(x) < \frac{1}{9}$	B1 B1
		3

39.			
(a)	Translation $\begin{pmatrix} 1\\ 0 \end{pmatrix}$	B 1	Allow shift and allow by 1 in x-direction or [parallel to/on/in/ along/against] the x-axis or horizontally. 'Translation by 1 to the right' only, scores B0
	Stretch	B1	Stretch. SC B2 for amplitude doubled.
	Factor 2 in y-direction	B1	With/by factor 2 in <i>y</i> -direction or [parallel to/on/in/along/against] the <i>y</i> -axis or vertically or with <i>x</i> axis invariant 'With/by factor 2 upwards' only, scores B0. Accept SF as an abbreviation for scale factor.
		3	Note: Transformations can be in either order
(b)	$[-\sin 6x][+15x]$ or $[\sin(-6x)][+15x]$ OE	B1 B1	Accept an unsimplified version. ISW. B1 for each correct component – square brackets indicate each required component.
			If B0, SC B1 for either $\sin(-2x) + 5x$ or $-\sin(2x) + 5x$ or $\sin 6x - 15x$ or $\sin\left(-\frac{2}{3}x\right) + \frac{5}{3}x$
		2	

40.			
(a)	$f(x) = (x-1)^2 + 4$	B1	
	$g(x) = (x+2)^2 + 9$	B1	
	g(x) = f(x+3) + 5	B1 B1	B1 for each correct element. Accept $p = 3, q = 5$
		4	
(b)	Translation or Shift	B1	
	$\begin{pmatrix} -3\\5 \end{pmatrix}$ or acceptable explanation	B1 FT	If given as 2 single translations both must be described correctly e.g. $\begin{pmatrix} -3 \\ 0 \end{pmatrix} \& \begin{pmatrix} 0 \\ 5 \end{pmatrix}$ FT from <i>their</i> f(x + p) + q or <i>their</i> f(x) \rightarrow g(x) Do not accept $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ or $\begin{pmatrix} -2 \\ 9 \end{pmatrix}$
		2	

11.	1		
a)	$\{(x+1)^2+2(x+1)-5\}+\{3\}$, or $\{(x+1+1)^2\}+\{-6+3\}$	M1 M1	M1 for dealing with $\begin{pmatrix} -1\\ 0 \end{pmatrix}$ and M1 for dealing with $\begin{pmatrix} 0\\ 3 \end{pmatrix}$
	$[y=]x^2+4x+1$	A1	Answer only given full marks.
		3	
b)	{Stretch} {x direction or horizontally or y-axis invariant} { factor ¹ / ₂ }	B2, 1, 0	Additional transformation B0.
		2	
42.			
a)	[y] < 2 OR [f(x)] < 2	В	1 OE e.g. $f < 2, (-\infty, 2), -\infty < f[x] < 2$. Do not accept $x < 2$ or $f(x) \leq 2$.
			1
b)	$y = 2 - \frac{5}{x+2}$ leading to $y(x+2) = 2(x+2) - 5$ leading to $xy + 2y = 2x - 1$	М	1 or $\frac{5}{x+2} = 2-y$ (allow sign errors).
	2y+1=2x-xy leading to $2y+1=x(2-y)$	DM	1 or $\frac{5}{2-y} = x+2$ (allow sign errors).
	$x = \frac{2y+1}{2-y} \rightarrow f^{-1}(x) = \frac{2x+1}{2-x}$	Α	1 OE or $y = \frac{5}{2-x} - 2$.
	Domain is x < 2	B1 F	F FT on the numerical part of <i>their</i> range from part (a), including $x \neq 2$ not penalized. No FT for $x \in \mathcal{R}, x = k, x \neq k$.
			4
(c)	$fg(x) = 2 - \frac{5}{x+3+2}$	В	1
	$=\frac{2(x+5)-5}{x+5} \text{ or } \frac{2(x+5)}{x+5} - \frac{5}{x+5}$	М	1 Use of <i>their</i> common denominator.
	$=\frac{2x+5}{x+5}$	А	1
			3