PURE MATHEMATICS -3 9709

(March, June and November series 2020 – 2023 With marking scheme)

POLYNOMIAL AND MODULUS FUNCTIONS EXERCISE -1

MANJULA BALAJI

1) SP-2020 _9709_3 Q3

(a) Sketch the graph of
$$y = |2x - 3|$$
. [1]

(b) Solve the inequality
$$3x-1 > |2x-3|$$
. [3]

2) MARCH 2020 9709 32 Q1

(a) Sketch the graph of
$$y = |x - 2|$$
. [1]

(b) Solve the inequality
$$|x-2| < 3x-4$$
. [3]

3) MARCH 2021_9709_32 Q2

The polynomial $ax^3 + 5x^2 - 4x + b$, where a and b are constants, is denoted by p(x). It is given that (x + 2) is a factor of p(x) and that when p(x) is divided by (x + 1) the remainder is 2.

Find the values of
$$a$$
 and b . [5]

4) MARCH 2022_9709_32 Q1

Solve the inequality
$$|2x+3| > 3|x+2|$$
. [4]

5) MARCH 2022 9709 32 Q8(a)

Find the quotient and remainder when
$$8x^3 + 4x^2 + 2x + 7$$
 is divided by $4x^2 + 1$. [3]

6) MARCH 2023 9709 32 Q3

The polynomial $2x^4 + ax^3 + bx - 1$, where a and b are constants, is denoted by p(x). When p(x) is divided by $x^2 - x + 1$ the remainder is 3x + 2.

Find the values of
$$a$$
 and b . [5]

7) JUNE 2020 9709 31 Q5(a)

Find the quotient and remainder when
$$2x^3 - x^2 + 6x + 3$$
 is divided by $x^2 + 3$. [3]

8) JUNE 2020 9709 32 Q1

Find the quotient and remainder when
$$6x^4 + x^3 - x^2 + 5x - 6$$
 is divided by $2x^2 - x + 1$. [3]

9) JUNE 2020 9709 33 Q1

Solve the inequality
$$|2x-1| > 3|x+2|$$
. [4]

10) JUNE 2021 9709 31 Q1

Solve the inequality
$$2|3x-1| < |x+1|$$
. [4]

11) JUNE 2021_9709_32 Q1

Solve the inequality
$$|2x-1| < 3|x+1|$$
. [4]

12) JUNE 2022 9709 31 Q5

The polynomial $ax^3 - 10x^2 + bx + 8$, where a and b are constants, is denoted by p(x). It is given that (x-2) is a factor of both p(x) and p'(x).

(b) When a and b have these values, factorise p(x) completely. [3]

13) JUNE 2022 9709 32 Q3 The polynomial $ax^3 + x^2 + bx + 3$ is denoted by p(x). It is given that p(x) is divisible by (2x - 1) and that when p(x) is divided by (x + 2) the remainder is 5. Find the values of a and b. [5] 14) JUNE 2022 9709 33 Q1 Find, in terms of a, the set of values of x satisfying the inequality 2|3x + a| < |2x + 3a|where a is a positive constant. [4] 15) JUNE 2023 9709 31 Q2 (a) Sketch the graph of y = |2x + 3|. [1] (b) Solve the inequality 3x + 8 > |2x + 3|. [3] 16) JUNE 2023 9709 32 Q1 Solve the inequality |5x - 3| < 2|3x - 7|. [4]

17) JUNE 2023_9709_33 Q2

Find the quotient and remainder when $2x^4 - 27$ is divided by $x^2 + x + 3$. [3]

18) OCT 2020_9709_31 Q1

Solve the inequality 2 - 5x > 2|x - 3|. [4]

19) OCT 2021 9709 32 Q2

Solve the inequality |3x - a| > 2|x + 2a|, where a is a positive constant. [4]

20) OCT 2021 9709 33 Q1

Find the quotient and remainder when $2x^4 + 1$ is divided by $x^2 - x + 2$. [3]

21) OCT 2021_9709_33 Q2

(a) Sketch the graph of y = |2x - 3|. [1]

(b) Solve the inequality |2x-3| < 3x + 2. [3]

22) OCT 2022 9709 31 Q1

(a) Sketch the graph of y = |2x + 1|. [1]

(b) Solve the inequality 3x + 5 < |2x + 1|. [3]

23) OCT 2022_9709_32 Q2

The polynomial $2x^3 - x^2 + a$, where a is a constant, is denoted by p(x). It is given that (2x + 3) is a factor of p(x).

(a) Find the value of a. [2]

(b) When a has this value, solve the inequality p(x) < 0. [4]

MARKING SCHEME

1) SP-2020 _9709_3 Q3

	Make a recognisable sketch graph of $y = 2x - 3 $	1	B1
	EITHER Solution 1 Find x-coordinate of intersection with $y = 3x - 1$	1	(M1
	Obtain $x = \frac{4}{5}$	1	A1
	State final answer $x > \frac{4}{5}$ only	1	A1)
	OR Solution 2 Solve the linear inequality $3x - 1 > 3 - 2x$, or corresponding equation	1	(M1
	Obtain critical value $x = \frac{4}{5}$	1	A1
	State final answer $x > \frac{4}{5}$ only	1	A1)
	OR Solution 3 Solve the quadratic inequality $(3x-1)^2 > (3-2x)^2$, or corresponding equation	1	(M1
	Obtain critical value $x = \frac{4}{5}$	1	A1
	State final answer $x > \frac{4}{5}$ only	1	A1)
	Available marks	3	

2) MARCH 2020_9709_32 Q1

a)	Make a recognisable sketch graph of $y = x-2 $	B1
		1
b)	Find x-coordinate of intersection with $y = 3x - 4$	M1
	Obtain $x = \frac{3}{2}$	A1
	State final answer $x > \frac{3}{2}$ only	A1
	Alternative method for question 1(b)	
	Solve the linear inequality $3x-4>2-x$, or corresponding equation	M1
	Obtain critical value $x = \frac{3}{2}$	A1
	State final answer $x > \frac{3}{2}$ only	A1
	Alternative method for question 1(b)	
	Solve the quadratic inequality $(x-2)^2 < (3x-4)^2$, or corresponding equation	M1
	Obtain critical value $x = \frac{3}{2}$	A1
	State final answer $x > \frac{3}{2}$ only	Al

3) MARCH 2021_9709_32 Q2

Substitute $x = -2$, equate result to zero and obtain a correct equation, e.g. $-8a + 20 + 8 + b = 0$	B1
Substitute $x = -1$ and equate result to 2	M1
Obtain a correct equation, e.g. $-a + 5 + 4 + b = 2$	A1
Solve for a or for b	M1
Obtain $a = 3$ and $b = -4$	A1

4) MARCH 2022_9709_32 Q1

State or imply non-modular inequality $(2x+3)^2 > 3^2(x+2)^2$, or corresponding quadratic equation, or pair of linear equations	B1	
Make a reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1	Quadratic formula or $(5x + 9)(x + 3)$
Obtain critical values $x = -3$ and $x = -\frac{9}{5}$	A1	OE
State final answer $-3 < x < -\frac{9}{5}$ or $x > -3$ and $x < -\frac{9}{5}$	A1	[Do not condone ≤ for < in the final answer.] No ISW

Alternative method for question 1

B1	$2x + 3 = 3(x + 2) \Rightarrow x = -3$
	y=3e+5
B2	
	[Do not condone ≤ for < in the final answer.] No ISW
	Bi

5) MARCH 2022 9709 32 Q8(a)

Commence division and reach quotient of the form $2x \pm 1$	MI	•
Obtain (quotient) $2x + 1$	A1	-
Obtain (remainder) 6	A1	_

6) MARCH 2023_9709_32 Q3

Commence division and reach partial quotient $2x^2 + (a \pm 2)x$	MI	$2x^{2} + (a+2)x + a \text{need } 2x^{2} + (a\pm 2)x$ $(x^{2} - x + 1) 2x^{4} + ax^{3} + 0x^{2} + bx - 1$ $2x^{4} - 2x^{3} + 2x^{2}$ $(a+2)x^{3} - 2x^{2} + bx$ $(a+2)x^{3} - (a+2)x^{2} + (a+2)x$ $ax^{2} + (b-(a+2))x - 1$ $ax^{2} - ax + a$ $(b-2)x - (1+a)$ Working backwards from remainder:
		$2x^2 + ()x \pm 3$ M1 $2x^2 - x - 3$ A1
Obtain correct quotient $2x^2 + (a+2)x + a$	A1	Allow sign error e.g. in $b-2$.
Set <i>their</i> linear remainder equal to part of " $3x + 2$ " and solve for a or for b	M1	Remainder = $3x + 2 = (b-2)x - 1 - a$. Allow for just equating x term or constant term.
Obtain answer $a = -3$	A1	
Obtain answer $b = 5$	A1	

Alternative method for Question 3		
State $2x^4 + ax^3 + 0x^2 + bx - 1 = (x^2 - x + 1)(2x^2 + Ax + B) + 3x + 2$ and form and solve equation(s) to obtain <i>A</i> or <i>B</i>	M1	e.g. $0 = B - A + 2$ and $-1 = B + 2$.
Obtain $A = -1$, $B = -3$	A1	
Form and solve equations for a or for b	M1	e.g. $a = A - 2$ or $b = -B + A + 3$.
Obtain answer $a = -3$	A1	
Obtain answer $b = 5$	A1	
Alternative method for Question 3		
Use remainder theorem with $x = \frac{1 \pm \sqrt{-3}}{2}$ or $x = \frac{1 \pm i\sqrt{3}}{2}$	M1	Allow for correct use of a reasonable attempt at either root in exact or decimal form in the remainder theorem $x^2 = \frac{-1 + \sqrt{-3}}{2} x^3 = -1 x^4 = \frac{-1 - \sqrt{-3}}{2}.$
Obtain $-a + \frac{b}{2} \pm \frac{b\sqrt{-3}}{2} \mp \sqrt{-3} - 2 = \frac{7}{2} \pm \frac{3\sqrt{-3}}{2}$ or $-a + \frac{b}{2} \pm \frac{bi\sqrt{3}}{2} \mp i\sqrt{3} - 2 = \frac{7}{2} \pm \frac{3i\sqrt{3}}{2}$	A1	Expand brackets and obtain exact equation for either root. Accept exact equivalent.
Solve simultaneous equations, or single equation, for a or for b	M1	
Obtain answer $a = -3$ from exact working	A1	
Obtain answer $b = 5$ from exact working	A1	
	5	

7) JUNE 2020_9709_31 Q5(a)

(a)	Commence division and reach quotient of the form $2x + k$	M1
	Obtain quotient $2x-1$	A1
	Obtain remainder 6	A1
		3

8) JUNE 2020_9709_32 Q1

Commence division and reach partial quotient $3x^2 + kx$	M1
Obtain quotient $3x^2 + 2x - 1$	A1
Obtain remainder 2x – 5	A1
	3

9) JUNE 2020_9709_33 Q1

State or imply non-modular inequality $(2x-1)^2 > 3^2(x+2)^2$, or corresponding quadratic equation, or pair of linear equations	B1
Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1
Obtain critical values $x = -7$ and $x = -1$	A1
State final answer $-7 \le x \le -1$	A1
Alternative method for question 1	
Obtain critical value $x = -1$ from a graphical method, or by solving a linear equation or linear inequality	B1
Obtain critical value $x = -7$ similarly	B2
State final answer $-7 \le x \le -1$ [Do not condone \le for \le in the final answer.]	B1
	+

10) JUNE 2021_9709_31 Q1

B1
M1
A1
A1

Alternative method for Question 1

Obtain critical value $x = \frac{3}{5}$ from a graphical method, or by solving a linear equation or linear inequality	В1
Obtain critical value $x = \frac{1}{7}$ similarly	В2
State final answer $\frac{1}{7} < x < \frac{3}{5}$	В1

11) JUNE 2021_9709_32 Q1

3011L 2021_3703_32 Q1		
State or imply non-modular inequality $(2x-1)^2 < 3^2(x+1)^2$, or corresponding quadratic equation	B1	e.g. $5x^2 + 22x + 8 = 0$ Allow recovery from 'invisible brackets' on RHS
Form and solve a 3-term quadratic in x	M1	
Obtain critical values $x = -4$ and $x = -\frac{2}{5}$	A1	
State final answer $x < -4$, $x > -\frac{2}{5}$	A1	Do not condone \leq for $<$, or \geqslant for $>$ in the final answer. Allow 'or' but not 'and'. $-\frac{2}{5} < x < -4$ scores A0. Accept equivalent forms using brackets e.g. $x \in (-\infty, -4) \cup (-0.4, \infty)$
Alternative method for Question 1		
Obtain critical value $x = -4$ from a graphical method, or by solving a linear equation or linear inequality	B1	\ / /
Obtain critical value $x = -\frac{2}{5}$ similarly	B2	
State final answer $x < -4$, $x > -\frac{2}{5}$	В1	Do not condone \leq for $<$, or \geqslant for $>$ in the final answer. Allow 'or' but not 'and'. $-\frac{2}{5} < x < -4$ scores A0. Accept equivalent forms using brackets e.g. $x \in (-\infty, -4) \cup (-0.4, \infty)$

12) JUNE 2022 9709 31 Q5

2) JUNI	= 2022_9709_31 Q5						
(a)	Substitute $x = 2$, equate to zero						
	Obtain a correct equation, e.g. $8a - 40 + 2b + 8 = 0$	A1					
	Differentiate $p(x)$, substitute $x = 2$ and equate result to zero	M1					
	Obtain $12a - 40 + b = 0$, or equivalent	A1					
	Obtain $a = 3$ and $b = 4$	A1					
	Alternative method for question 5(a)						
	State or imply $(x-2)^2$ is a factor	M1					
	$p(x) = (x-2)^2 (ax+2)$	A1					
	Obtain an equation in b	M1					
	e.g. by comparing coefficients of x: $b=4a-8$	A1					
	Obtain $a = 3$ and $b = 4$	A1					
(b)	Attempt division by $(x-2)$	M1					
	Obtain quadratic factor $3x^2 - 4x - 4$	A1					
	Obtain factorisation $(3x+2)(x-2)(x-2)$	A1					
	Alternative method for question 5(b)						
	State or imply $(x-2)^2$ is a factor	B1					
	Attempt division by $(x-2)^2$, reaching a quotient $ax + k$ or use inspection with unknown factor $cx + d$ reaching a value for c or for d	M1					
	Obtain factorisation $(3x+2)(x-2)^2$	A1					

13) JUNE 2022_9709_32 Q3

Substitute $x = \frac{1}{2}$, equate result to zero	M1	
Obtain a correct simplified equation	A1	
Substitute $x = -2$, equate result to 5	М1	
Obtain a correct simplified equation	A1	
Obtain $a = 2$ and $b = -7$	A1	
	5	

14) JUNE 2022_9709_33 Q1

State or imply non-modular inequality $2^2(3x+a)^2 < (2x+3a)^2$, or corresponding quadratic equation, or pair of linear equations	B1
Solve 3-term quadratic, or solve two linear equations for x	M1
Obtain critical values $x = \frac{1}{4} a$ and $x = -\frac{5}{8} a$	A1
State final answer $-\frac{5}{8}a < x < \frac{1}{4}a$ or $-0.625a < x < 0.25a$ or $x > -\frac{5}{8}a$ and $x < \frac{1}{4}a$ or $x > -\frac{5}{8}a$ $x < \frac{1}{4}a$	A1

Alternative method for question 1

Obtain critical value $x = \frac{1}{4}a$ from a graphical method, or by solving a linear equation or linear inequality	B1
inical equation of inical inequality	
Obtain critical value $x = -\frac{5}{8}a$ similarly	B2
State final answer $-\frac{5}{8}a < x < \frac{1}{4}a$ or $-0.625a < x < 0.25a$	B1
or $x > -\frac{5}{8}a$ and $x < \frac{1}{4}a$ or $x > -\frac{5}{8}a $ $x < \frac{1}{4}a$	
	4

15) JUNE 2023_9709_31 Q2

)	Find x-coordinate of intersection with $y = 3x + 8$	M1	
	Obtain $x = -\frac{11}{5}$	A1	
	State final answer $x > -\frac{11}{5}$ only	A1	$(x > -2.2)$ Do not condone \geqslant for $>$.
	Alternative Method 1		
	Solve the linear inequality $3x+8>-(2x+3)$, or corresponding linear equation	M1	
	Obtain critical value $x = -\frac{11}{5}$	A1	
	State final answer $x > -\frac{11}{5}$ only	A1	$(x > -2.2)$ Do not condone \geqslant for $>$.
	Alternative Method 2		
	Solve the quadratic inequality $(3x+8)^2 > (2x+3)^2$, or corresponding quadratic equation	(M1)	$5x^2 + 36x + 55$.
	Obtain critical value $x = -\frac{11}{5}$	(A1)	Ignore -5 if seen.
	State final answer $x > -\frac{11}{5}$ only	(A1)	$(x > -2.2)$ Do not condone \geqslant for $>$.

16) JUNE 2023_9709_32 Q1

	1
В1	$11x^2 - 138x + 187 > 0.$
M1	If no working is shown, the M1 is implied by the correct roots for an incorrect quadratic.
A1	Accept 1.55 or better.
A1	Strict inequality required. In set notation, allow notation for open sets but not for closed sets e.g. accept $\left(-\infty,\frac{17}{11}\right)\cup\left(11,\infty\right)$ or $\left(-\infty,\frac{17}{11}\left[\cup]11,\infty\right)$ but not $\left(-\infty,\frac{17}{11}\right]\cup\left[11,\infty\right)$. Allow 'or' but not 'and'. Accept \cup . Final A0 for $\frac{17}{11}>x>11$. Exact values expected but ISW if exact inequalities seen followed by decimal approx.
B1	
B2	Accept decimal value.
B1	Strict inequality required. See notes above.
	M1 A1 A1 B1 B2

17) JUNE 2023_9709_33 Q2

Divide to obtain quotient $2x^2 \pm 2x + k \ (k \neq 0)$	M1	Obtain result in answer column, together with a linear polynomial or a constant as remainder. If correct: $x^{2} + x + 3 = 2x^{2} - 2x - 4 - 27 = 2x^{4} + 2x^{3} + 6x^{2} = -2x^{3} - 6x^{2} = -2x^{3} - 6x = -4x^{2} + 6x - 27 = -4x^{2} - 4x - 12 = 10x - 15$
Obtain [quotient] $2x^2 - 2x - 4$	A1	Allow unless quotient and remainder interchanged, then A0 A1.
Obtain [remainder] $10x-15$	A1	Allow $(x^2 + x + 3)(2x^2 - 2x - 4) + 10x - 15$.
Alternative Method for Question 2		
Expand $(x^2 + x + 3)(Ax^2 + Bx + C) + (Dx + E)$ and reach $A = 2$, $B = \pm 2$, $C = k$	MI	Solve all 3 equations for A , B and C , allow sign errors in establishing equations and in solving. If correct, $A = 2$, $A + B = 0$, $3A + B + C = 0$, $3B + C + D = 0$, $3C + E = -27$. Obtain result in answer column, together with a linear polynomial or a constant as remainder.
Obtain [quotient] $2x^2 - 2x - 4$	A1	Allow unless quotient and remainder interchanged, then A0 A1.
Obtain [remainder] $10x-15$	A1	Allow $(x^2 + x + 3)(2x^2 - 2x - 4) + 10x - 15$.
	3	

18) OCT 2020_9709_31 Q1

C1 2020_9709_31 Q1		
Make a recognisable sketch graph of $y = 2 x-3 $ and the line $y = 2 - 5x$	В1	Need to see correct V at $x = 3$, roughly symmetrical, $x = 3$ stated, domain at least $(-2, 5)$.
Find x-coordinate of intersection with $y = 2 - 5x$	M1	Find point of intersection with $y = 2 x - 3 $ or solve $2 - 5x$ with $2(x - 3)$ or $-2(x - 3)$
Obtain $x = -\frac{4}{3}$	A1	
State final answer $x < -\frac{4}{3}$	A1	Do not accept $x < -1.33$ [Do not condone \leq for $<$ in the final answer.]
Alternative method for question 1		
State or imply non-modular inequality/equality $(2-5x)^2 >$, \geqslant , $=$, $2^2(x-3)^2$, or corresponding quadratic equation, or pair of linear equations $(2-5x) >$, \geqslant , $=$, $\pm 2(x-3)$	В1	Two correct linear equations only
Make reasonable attempt at solving a 3-term quadratic, or solve one linear equation, or linear inequality for \boldsymbol{x}	M1	$21x^2 + 4x - 32 = (3x + 4)(7x - 8) = 0$ 2 - 5x or -(2 - 5x) with 2(x - 3) or -2(x - 3)
Obtain critical value $x = -\frac{4}{3}$	A1	
State final answer $x < -\frac{4}{3}$	A1	Do not accept $x < -1.33$ [Do not condone \leq for $<$ in the final answer.]
	4	

19) OCT 2021_9709_32 Q2

State or imply non-modular inequality $(3x-a)^2 > 2^2(x+2a)^2$, or corresponding quadratic equation, or pair of linear equations or linear inequalities	B1	Need 2 ² seen or implied.
Make reasonable attempt to solve a 3-term quadratic, or solve two linear equations for x in terms of a	М1	$(5x^2 - 22ax - 15a^2 = 0)$
Obtain critical values $x = 5a$ and $x = -\frac{3}{5}a$ and no others	A1	OE Accept incorrect inequalities with correct critical values. Must state 2 values i.e. $\frac{a\pm b}{c}$ is not sufficient.
State final answer $x > 5a$, $x < -\frac{3}{5}a$	A1	Do not condone \geqslant for $>$ or \leqslant for $<$ in the final answer. $5a < x < -\frac{3}{3}a$ is A0, 'and' is A0.
Alternative method for Question 2		
Obtain critical value $x = 5a$ from a graphical method, or by solving a linear equation or linear inequality	B1	
Obtain critical value $x = -\frac{3}{5}a$ similarly	B2	Maximum 2 marks if more than 2 critical values.
State final answer $x > 5a$, $x < -\frac{3}{5}a$	B1	Do not condone \geq for $>$ or \leq for $<$ in the final answer. $5a < x < -\frac{3}{5}a$ is B0 , 'and' is B0 .
	4	

20) OCT 2021_9709_33 Q1

Commence division and reach partial quotient of the form $2x^2 + kx$	Mı
Obtain quotient $2x^2 + 2x - 2$	A 1
Obtain remainder -6x+5	A 1

21) OCT 2021_9709_33 Q2

?(a)	Show a recognizable sketch graph of $y = 2x - 3 $	B1	
		1	

Find x-coordinate of intersection with $y = 3x + 2$		
Obtain $x = \frac{1}{5}$		
State final answer $x > \frac{1}{5}$ only	A1	
Alternative method for Question 2(b)		
Solve the linear inequality $3-2x < 3x + 2$, or corresponding equation	М1	
Obtain critical value $x = \frac{1}{5}$		
State final answer $x > \frac{1}{5}$ only	A1	
Alternative method for Question 2(b)		
Solve the quadratic inequality $(2x-3)^2 < (3x+2)^2$, or corresponding equation		
Obtain critical value $x = \frac{1}{5}$		
State final answer $x > \frac{1}{5}$ only	A1	
	3	

22) OCT 2022_9709_31 Q1

(a) Show a recognisable sketch graph of y = |2x + 1|

)	Find x-coordinate of intersection with $y = 3x + 5$	M1			
	Obtain $x = -\frac{6}{5}$	A1			
	State final answer $x < -\frac{6}{5}$ only	A1	Do not condone ≤ for < in the final answer.		
	Alternative method 1 for question 1(b)				
	Solve the linear inequality $3x+5<-(2x+1)$, or corresponding equation	M1	Must solve the relevant equation.		
	Obtain critical value $x = -\frac{6}{5}$	A1	Ignore –4 if seen.		
	State final answer $x < -\frac{6}{5}$ only	A1			
	Alternative method 2 for question 1(b)				
	Solve the quadratic inequality $(3x+5)^2 < (2x+1)^2$, or corresponding equation	M1	$5x^2 + 26x + 24 < 0$		
	Obtain critical value $x = -\frac{6}{5}$	A1	Ignore –4 if seen.		
	State final answer $x < -\frac{6}{5}$ only	A1			
		3			

23) OCT 2022_9709_32 Q2

3,001	2022_3703_32 Q2		
(a)	Substitute $x = -\frac{3}{2}$ and equate result to zero	M1	Or divide by $2x + 3$ and set constant remainder equal to zero. Or state $(2x^3 - x^2 + a) = (2x + 3)(x^2 + px + q)$, compare coefficients and solve for p or q .
	Obtain $a = 9$	A1	
		,	
(b)	Commence division by $(2x+3)$ reaching a partial quotient $x^2 + kx$	*M1	The M1 is earned if inspection reaches an unknown factor: $x^2 + Bx + C$ and an equation in B and/or C, or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B.
	Obtain factorisation $(2x+3)(x^2-2x+3)$	A1	Allow if the correct quotient seen. Correct factors seen in (a) and quoted or used here scores M1A1.
	Show that $x^2 - 2x + 3$ is always positive, or $2x^3 - x^2 + 9$ only intersects the x-axis once	DM1	Must use their quadratic factor. SC If M0, allow B1 if state $x < -\frac{3}{2}$ and no error seen
	State final answer $x < -\frac{3}{2}$ from correct work	A1	
		4	